

Hallo .NET 9.0: Practical ASP.NET
Core Minimal API
Agus Kurniawan

Ilmu Data

21 August 2025

© 2025 Ilmu Data. All rights reserved.

Table of Contents
Preface
Acknowledgments
1 Introduction

1.1 Overview of .NET 9.0
1.1.1 Unified Platform
1.1.2 Performance Enhancements
1.1.3 Improved Cloud and Container Support
1.1.4 Enhanced C# Language Features
1.1.5 Blazor and WebAssembly Innovations
1.1.6 Expanded AI and Machine Learning Capabilities
1.1.7 Better Security and Compliance
1.1.8 Enhanced Tooling and Development Experience

1.2 Understanding ASP.NET Core Minimal API
1.3 Benefits of Using Minimal APIs
1.4 Best Practices and Use Cases
1.5 Setting Up the Development Environment

1.5.1 Installing .NET 9.0 SDK
1.5.2 Installing SSL Certificates Development Tool
1.5.3 Setting Up an Integrated Development
Environment (IDE)
1.5.4 Verifying the Setup
1.5.5 Additional Tools and Extensions

2 ASP.NET Core Minimal API Development
2.1 Introduction
2.2 Exercise 1: Hello World - ASP.NET Core Minimal API

2.2.1 Objective
2.2.2 Requirements
2.2.3 Lab Steps
2.2.4 Conclusion

2.3 Exercise 2: RESTful Service Request and Response
2.3.1 Objective
2.3.2 Requirements
2.3.3 Lab Steps

2.3.4 Conclusion
2.4 Exercise 3: OpenAPI Documentation

2.4.1 Conclusion
2.5 Exercise 4: Buidling a Calculator Service

2.5.1 Objective
2.5.2 Requirements
2.5.3 Lab Steps
2.5.4 Conclusion

2.6 Exercise 5: Upload and Download File Web
2.6.1 Objective
2.6.2 Requirements
2.6.3 Lab Steps
2.6.4 Conclusion

2.7 Exercise 6: Exception Handling and Logging
2.7.1 Objective
2.7.2 Requirements
2.7.3 Lab Steps
2.7.4 Conclusion

2.8 Exercise 7: Middleware and Filters
2.8.1 Objective
2.8.2 Requirements
2.8.3 Lab Steps
2.8.4 Conclusion

3 Accessing SQL and NoSQL Databases
3.1 Introduction
3.2 .NET Entity Framework Core
3.3 Entity Framework Core tools
3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET Core
Minimal API

3.4.1 Objective
3.4.2 Requirements
3.4.3 Lab Steps
3.4.4 Conclusion

3.5 Exercise 9: EF Core 9.0 Database First and ASP.NET
Core Minimal API

3.5.1 Objective
3.5.2 Requirements

3.5.3 Lab Steps
3.5.4 Conclusion

3.6 Introduction to Database Transactions
3.7 Exercise 10: Database Transaction

3.7.1 Objective
3.7.2 Requirements
3.7.3 Lab Steps
3.7.4 Conclusion

3.8 Introduction to NoSQL Databases
3.9 Exercise 11: NoSQL Database and ASP.NET Core
Minimal API

3.9.1 Objective
3.9.2 Requirements
3.9.3 Lab Steps
3.9.4 Conclusion

4 Deep Dive into Web Security
4.1 Introduction
4.2 Exercise 12: Authentication and Authorization

4.2.1 Objective
4.2.2 Requirements
4.2.3 Lab Steps
4.2.4 Conclusion

4.3 Exercise 13: Role-Based Access Control (RBAC)
4.3.1 Objective
4.3.2 Requirements
4.3.3 Lab Steps
4.3.4 Conclusion

4.4 Exercise 14: Data Privacy and Protection
4.4.1 Objective
4.4.2 Requirements
4.4.3 Lab Steps
4.4.4 Conclusion

4.5 Exercise 15: Rate Limiting and Throttling
4.5.1 Objective
4.5.2 Requirements
4.5.3 Lab Steps
4.5.4 Conclusion

4.6 Exercise 16: Configuring CORS in ASP.NET Core 9.0
Minimal API

4.6.1 Objective
4.6.2 Requirements
4.6.3 Lab Steps
4.6.4 Conclusion

5 Monitoring and Deployment
5.1 Introduction

5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API
5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

5.2 Exercise 17: Health Check and Monitoring
5.2.1 Objective
5.2.2 Requirements
5.2.3 Lab Steps
5.2.4 Implement Custom Health Checks (Advanced)
5.2.5 Conclusion

5.3 Exercise 18: Deploying to Web Server IIS
5.3.1 Objective
5.3.2 Requirements
5.3.3 Lab Steps
5.3.4 Conclusion

5.4 Exercise 19: Deploying to Linux Server with Nginx
5.4.1 Objective
5.4.2 Requirements
5.4.3 Lab Steps
5.4.4 Conclusion

5.5 Exercise 20: Deploying to Container Platforms
5.5.1 Objective
5.5.2 Requirements
5.5.3 Lab Steps
5.5.4 Conclusion

Appendix A: C# Cheat Sheet
Appendix B: Resources

SQL Server 2025 High Availability & Disaster Recovery:
Always On Solutions Course
Enhance Your Learning with Our Udemy Course
Dive Deeper into Containerization with Our Udemy Course

Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2,
and JWT
Master Real-World Logging & Visualization with the Full
ELK Stack

Appendix C: Source Code
About

Preface
In the ever-evolving landscape of software development, staying abreast of
the latest technologies and frameworks is not just a requirement but a
necessity. With the release of .NET 9.0, Microsoft continues its tradition of
offering robust, efficient, and forward-thinking solutions for developers
worldwide. Among its many features, ASP.NET Core Minimal API stands
out as a revolutionary approach to building web APIs with less boilerplate
code, enabling developers to focus more on their application’s core
functionality.

“Hallo .NET 9.0: Practical ASP.NET Core Minimal API” is crafted to guide
you through the journey of understanding and implementing Minimal APIs
in .NET 9.0. This book aims to equip you with the knowledge and practical
skills to build efficient and scalable web APIs using the new features and
paradigms introduced in .NET 9.0. Whether you are a seasoned developer
or just starting, this book will serve as a comprehensive resource for
mastering Minimal APIs.

Throughout this book, we’ll delve into various aspects of ASP.NET Core
Minimal API, starting from the basics and gradually moving to more
advanced topics. You’ll learn about:

What will you learn:

The fundamentals of .NET 9.0 and its improvements over previous
versions.
Step-by-step guidance on setting up and configuring a Minimal API
project.
Best practices for structuring your projects for maintainability and
scalability.
Advanced features like dependency injection, middleware integration,
and data access.
Practical examples demonstrating the use of Minimal APIs in real-
world scenarios.

Deployment strategies and performance optimization tips.

This book is designed for a wide range of readers - from beginners who
have a basic understanding of .NET and C# to experienced developers
looking to enhance their skills with the latest advancements in .NET 9.0.
It’s also a valuable resource for IT professionals, students, and anyone
interested in developing modern web applications efficiently.

Agus Kurniawan

Depok, August 2025

Acknowledgments
A heartfelt thank you to the community of developers, contributors, and
technology enthusiasts whose feedback and insights have been invaluable in
shaping this book.

As you turn these pages, I hope you find “Hallo .NET 9.0: Practical
ASP.NET Core Minimal API” not only informative but also inspiring,
opening new avenues for your creativity and innovation in the world of
software development.

1 Introduction
1.1 Overview of .NET 9.0

.NET 9.0 marks a significant milestone in the evolution of Microsoft’s .NET
platform. Building upon the foundation laid by its predecessors, .NET 9.0
brings a host of new features, improvements, and optimizations that cater to
the needs of modern software development. This section delves into the core
aspects of .NET 9.0, highlighting its most impactful changes and how they
benefit developers and businesses alike.

1.1.1 Unified Platform

.NET 9.0 continues the journey towards a unified framework, further
integrating capabilities across different .NET components. This unification
simplifies the development process, making it easier for developers to build
applications that run seamlessly across various platforms, including
Windows, Linux, macOS, and mobile devices.

1.1.2 Performance Enhancements

One of the hallmark features of .NET 9.0 is its enhanced performance. The
runtime and core libraries have undergone significant optimizations, resulting
in faster application startup times, reduced memory footprint, and improved
overall efficiency. These enhancements ensure that applications built on
.NET 9.0 are not only faster but also more resource-efficient.

1.1.3 Improved Cloud and Container Support

.NET 9.0 offers enhanced support for cloud and container-based
environments. With native cloud integration and optimized container
performance, it becomes a go-to choice for building cloud-native
applications. This version also includes features that simplify the
development and deployment of microservices and serverless applications.

1.1.4 Enhanced C# Language Features

C# continues to evolve alongside .NET, and version 9.0 of the framework
fully supports the latest version of the C# language. This update introduces
new language features that promote cleaner, more maintainable code,
enhancing developer productivity and application maintainability.

1.1.5 Blazor and WebAssembly Innovations

Blazor, Microsoft’s framework for building interactive web UIs with C#,
receives significant updates in .NET 9.0. These include performance
improvements and new features for Blazor WebAssembly, enabling
developers to build highly performant client-side web applications.

1.1.6 Expanded AI and Machine Learning Capabilities

.NET 9.0 expands its capabilities in AI and machine learning with enhanced
ML.NET libraries. This makes it easier for developers to integrate machine
learning into their applications, leveraging the power of AI for more
intelligent, data-driven solutions.

1.1.7 Better Security and Compliance

Security is a top priority in .NET 9.0, with strengthened security measures
and compliance features. This ensures that applications built using .NET 9.0
are not only robust and performant but also secure and compliant with the
latest industry standards.

1.1.8 Enhanced Tooling and Development Experience

Finally, .NET 9.0 brings improvements to its tooling and development
experience. With a more refined Visual Studio integration, developers can
enjoy a smoother, more efficient development workflow, complete with
powerful debugging and diagnostic tools.

1.2 Understanding ASP.NET Core Minimal API

Minimal APIs in ASP.NET Core 9 represent a streamlined, low-ceremony
method for building HTTP APIs. They are designed to reduce the complexity
and boilerplate code traditionally associated with setting up a new API in
ASP.NET Core.

Key Features of Minimal APIs

Simplicity and Conciseness: Emphasize how Minimal APIs reduce the
amount of code needed to start a basic API project, making them ideal
for small services or microservices.
Routing and Middleware Integration: Explain how routing is handled
in Minimal APIs and how they seamlessly integrate with existing
middleware in the ASP.NET Core ecosystem.
Dependency Injection: Describe how Minimal APIs support
dependency injection, allowing services to be injected directly into route
handlers.

Building a Minimal API

Setting Up: Step-by-step guide on setting up a new project with a
Minimal API in ASP.NET Core 9, including the required NuGet
packages and project configuration.
Defining Endpoints: Demonstrate how to define HTTP endpoints
(GET, POST, PUT, DELETE) using the simplified syntax of Minimal
APIs.
Request and Response Handling: Overview of handling requests and
sending responses, including parsing query parameters and returning
different types of responses (JSON, plain text, etc.).

1.3 Benefits of Using Minimal APIs

Reduced Complexity: Discuss how Minimal APIs make it easier to
build and maintain small to medium-sized APIs by reducing the layers
of abstraction and the amount of boilerplate code.
Improved Performance: Highlight any performance improvements
associated with using Minimal APIs, particularly in terms of memory
footprint and startup time.

Flexibility and Testability: Explain how the simplicity of Minimal
APIs offers greater flexibility in development and makes unit testing
more straightforward.

1.4 Best Practices and Use Cases

When to Use Minimal APIs: Provide guidance on scenarios where
Minimal APIs are the most beneficial, such as microservices, small web
services, or when building APIs for simple applications.
Best Practices: Share best practices for structuring and organizing
Minimal API projects, error handling, and security considerations.

1.5 Setting Up the Development Environment

To effectively work with .NET 9.0 and utilize Native AOT, it’s crucial to set
up a robust development environment. This section walks you through the
steps to prepare your system for .NET 9.0 development, focusing on tools,
software, and configurations necessary for taking full advantage of Native
AOT.

1.5.1 Installing .NET 9.0 SDK

Download the SDK: Begin by downloading the .NET 9.0 Software
Development Kit (SDK) from the official Microsoft .NET website.
Ensure you select the correct version for your operating system.

Installation Process: Follow the installation instructions specific to
your OS. This typically involves running an installer or executing a set
of commands in the terminal.

1.5.2 Installing SSL Certificates Development Tool

To enable HTTPS in your ASP.NET Core applications, you need to install the
SSL certificates development tool. This tool is available as a .NET global
tool, which you can install using the following command:

dotnet tool install --global dotnet-dev-certs

This command installs the dotnet-dev-certs tool globally, allowing you to
manage development certificates for HTTPS in your applications.

If you use Ubuntu, you may need to install the libnss3-tools package before
installing the tool. Now you can use the tool to generate and install the
required certificates:

dotnet dev-certs https

sudo -E dotnet dev-certs https -ep /usr/local/share/ca-certificates/aspnet/https.crt
--format PEM

1.5.3 Setting Up an Integrated Development Environment (IDE)

Choosing an IDE: Visual Studio, Visual Studio Code, or JetBrains
Rider are recommended IDEs for .NET development. Choose one that
best fits your development style and needs.

Figure 1.1 Visual Studio Code.

IDE Configuration: Install the necessary extensions or plugins for
.NET development. For Visual Studio, the .NET desktop development

workload is essential. For Visual Studio Code, the C# extension by
OmniSharp is required.

In this book, we will use Visual Studio Code for all code examples and
demonstrations.

We will also use the C# extension by REST Client(Huachao Mao) for
Visual Studio Code, https://marketplace.visualstudio.com/items?
itemName=humao.rest-client. This extension allows us to test our APIs
using a simple text file. The extension is shown in Figure 1.2.

Figure 1.2 Visual Studio Code extension for REST Client.

1.5.4 Verifying the Setup

Testing the .NET Installation: After installing the SDK, open a
command prompt or terminal and run dotnet --version to verify the
installation.

Creating a Test Project: Create a simple .NET project using the
command line or your IDE to ensure everything is working correctly.
This can be a basic “Hello World” application.

https://marketplace.visualstudio.com/items?itemName=humao.rest-client

Experimenting with ASP.NET Core Minimal API: Compile the test
project with ASP.NET Core Minimal API to confirm that your setup
supports this feature. Monitor the compilation process and output for
any errors or issues.

1.5.5 Additional Tools and Extensions

Source Control Integration: Consider installing Git and integrating it
with your IDE for version control.

Debugging and Diagnostic Tools: Familiarize yourself with debugging
tools available in your IDE, as they are essential for development and
troubleshooting.

2 ASP.NET Core Minimal API
Development
2.1 Introduction

Welcome to the exciting world of ASP.NET Core Minimal API development in
.NET 9.0. This chapter serves as your comprehensive guide, combining the robust
features of ASP.NET Core Minimal API with the performance improvements
offered by .NET 9.0. It’s a journey through innovative and efficient web
development techniques.

Chapter Overview

In this chapter, we embark on a series of exercises designed to build your
proficiency in ASP.NET Core 9.0 Minimal API:

1. Exercise 1: Hello World - ASP.NET Core Minimal API
Kickstart your journey with a simple “Hello World” application,
introducing the basics of ASP.NET Core Minimal API.

2. Exercise 2: RESTful Service Request and Response
Dive deeper into the creation of a RESTful service, focusing on
handling requests and sending responses.

3. Exercise 3: Swagger API Documentation
Learn how to implement Swagger for your API documentation, making
your web services more accessible and easier to use.

4. Exercise 4: Building a Calculator Service
Develop a calculator service to understand handling different types of
HTTP requests and performing basic operations.

5. Exercise 5: Upload and Download File Web API
Explore the process of setting up APIs for file upload and download, a
common requirement in modern web applications.

6. Exercise 6: Exception Handling and Logging
Delve into best practices for exception handling and logging to build
robust and reliable web applications.

7. Exercise 7: Middleware and Filters
Conclude with an exploration of middleware and filters, crucial for
managing HTTP requests and responses in your API.

Preparing for Hands-On Labs

These exercises are designed to be hands-on and engaging, providing practical
experience in building, optimizing, and deploying ASP.NET Core Minimal API
using.NET 9.0. Each exercise builds on the previous one, ensuring a
comprehensive understanding of the subject.

2.2 Exercise 1: Hello World - ASP.NET Core Minimal
API

In this exercise, you’ll create a basic “Hello World” application using ASP.NET
Core 9.0 Minimal API. You’ll learn how to set up, modify, and run a compiled
ASP.NET Core Minimal API project, gaining a foundation in this innovative
approach to .NET development.

2.2.1 Objective

Create a basic “Hello World” Web API application using ASP.NET Core 9.0 with
the webapi template, showcasing ASP.NET Core Minimal API capabilities.

2.2.2 Requirements

.NET 9.0 SDK installed
A preferred code editor (e.g., Visual Studio, Visual Studio Code)
Basic understanding of ASP.NET Core and C#

2.2.3 Lab Steps

Here’s a step-by-step guide to creating your first ASP.NET Core Minimal API
project:

1. Create a New ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Navigate to the directory where you want to create the project.

Or create a new directory for the project:

mkdir hello

cd hello

Run the following command to create a new ASP.NET Core Minimal API
project template:

dotnet new webapi

Open the project in your code editor:

code .

You should see the following project structure in your code editor:

Figure 2.1 Project structure of the ASP.NET Core Minimal API project.

2. Build and Run the Application

Return to the command prompt or terminal.

Run the following command to build the project:

To run the application, you can use the following command:

dotnet run

To run the application with https profile, you can use the following
command:

dotnet build

dotnet run --launch-profile https

3. Test the API

Open a web browser or use a tool like Postman.

Navigate to http://localhost:<server-port>/weatherforecast.

Change the port number <server-port> to the port number displayed in the
command prompt or terminal.

You should see a response displaying weather forecast.

Figure 2.2 Output weather forecast application.

We can also use the REST Client extension to test the API. The following is
the content of the hello.http file:

@hello_HostAddress = http://localhost:5259

GET {{hello_HostAddress}}/weatherforecast

Accept: application/json

###

Modify port 5259 to the port number displayed in the command prompt or
terminal.

Click the Send Request button to test the API.

You should see a response displaying weather forecast.

Figure 2.3 Test using http file with REST Client tool.

2.2.4 Conclusion

This lab has guided you through creating a basic “Hello World” application using
the ASP.NET Core 9.0 Minimal API. You’ve seen firsthand how to set up, modify,
and run a compiled ASP.NET Core Minimal API project, gaining a foundation in
this innovative approach to .NET development.

2.3 Exercise 2: RESTful Service Request and Response

This lab provides a practical introduction to creating RESTful services with
ASP.NET Core 9 using the minimal API approach. It’s designed to offer hands-on
experience with the core concepts of RESTful service development in a modern
and efficient way.

2.3.1 Objective

Develop a RESTful service using ASP.NET Core 9 Minimal API that handles
various HTTP methods (GET, POST, PUT, DELETE) and provides appropriate
responses.

2.3.2 Requirements

.NET 9.0 SDK installed
A preferred code editor (e.g., Visual Studio, Visual Studio Code)

2.3.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory.

Run the following command to create a new ASP.NET Core Minimal API
project:

mkdir restfulapi

cd restfulapi

dotnet new webapi

Open the project in your code editor:

code .

2. Modify the Project for Minimal API

Open the project in your code editor.

Remove all endpoints from the Program.cs file.

Add the content of GET Restfull API with the following code:

...

// In-memory data store

var items = new List<string>();

for (int i = 1; i <= 5; i++)

{

 items.Add($"Item {i}");

}

// GET endpoint

app.MapGet("/items", () => items);

Add the content of POST Restfull API with the following code:

Add the content of PUT Restfull API with the following code:

Add the content of DELETE Restfull API with the following code:

3. Build and Run the Application

Use the command prompt or terminal to build and run the project:

dotnet run

You can also run the application with https profile:

dotnet run --launch-profile https

4. Testing the API

You can use tools like Postman or the built-in REST client in Visual Studio
Code to test your API.

...

// POST endpoint

app.MapPost("/items", (string item) =>

{

 items.Add(item);

 return Results.Created($"/items/{items.Count - 1}", item);

});

// PUT endpoint

app.MapPut("/items/{id}", (int id, string item) =>

{

 if (id < 0 || id >= items.Count)

 {

 return Results.NotFound();

 }

 items[id] = item;

 return Results.NoContent();

});

// DELETE endpoint

app.MapDelete("/items/{id}", (int id) =>

{

 if (id < 0 || id >= items.Count)

 {

 return Results.NotFound();

 }

 items.RemoveAt(id);

 return Results.Ok();

});

Test the following endpoints:

GET /items: Retrieve a list of items.
POST /items: Add a new item (include the item as a plain text in the
request body).
PUT /items/{id}: Update an item at a specific index (provide the index in
the URL and the new item as plain text in the request body).
DELETE /items/{id}: Delete an item at a specific index.

We also test using the REST Client extension. The following is the content of
the restfulapi.http file:

@restfulapi_HostAddress = http://localhost:5013

GET {{restfulapi_HostAddress}}/items

Accept: application/json

###

POST {{restfulapi_HostAddress}}/items?item=item 20

Accept: application/json

###

PUT {{restfulapi_HostAddress}}/items/2?item=item 2-edited

Accept: application/json

###

DELETE {{restfulapi_HostAddress}}/items/1

Accept: application/json

###

Modify port 5013 to the port number displayed in the command prompt or
terminal or based your configuration.

Click the Send Request button to test the API.

You should see a response displaying the list of items.

Figure 2.4 Test using http file for Restful API application.

2.3.4 Conclusion

In this lab, you have created a simple RESTful service using ASP.NET Core 9
Minimal API. This service demonstrates handling different types of HTTP
requests and sending appropriate responses. You have also learned how to manage
a simple in-memory data store and perform basic CRUD operations.

2.4 Exercise 3: OpenAPI Documentation

With the release of ASP.NET Core 9.0, creating robust and well-documented web
APIs has become more streamlined than ever. One of the key changes in the webapi
template is the transition from Swagger to built-in OpenAPI support. This
integration provides developers with a modern, standardized approach to API
documentation and testing.

Built-in OpenAPI Integration

Out-of-the-Box OpenAPI Support: When you create a new web API
project using the webapi template in ASP.NET Core 9.0, OpenAPI support is
included by default. This provides an interactive documentation interface
without any additional setup.

Microsoft.AspNetCore.OpenApi: ASP.NET Core 9.0 uses the built-in
OpenAPI package to generate API documentation. This package provides a
set of tools for generating OpenAPI specifications based on your API code.

Explaining the Code

We can see the following code in the Program.cs file:

AddOpenApi(): This method registers the OpenAPI services in the
application’s dependency injection container. The OpenAPI generator
produces the OpenAPI specification for your API - a standardized,
machine-readable representation of your API’s structure and
capabilities. It includes information about available endpoints, their
parameters, response types, and other details necessary for documenting
and interacting with the API.

if (app.Environment.IsDevelopment()): This conditional statement checks if
the application is running in the development environment. It’s a best
practice to enable OpenAPI documentation only in development, as
exposing your API’s structure in production environments can lead to
security risks.

builder.Services.AddOpenApi();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

}

// Add services to the container.

builder.Services.AddOpenApi();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

}

app.MapOpenApi();: This method maps the OpenAPI specification endpoint
to your application. By default, it serves the generated OpenAPI
specification as a JSON document at /openapi/v1.json. This JSON file
contains the complete API specification that can be consumed by
various tools and documentation generators.

Accessing OpenAPI Documentation

OpenAPI Specification: Once your ASP.NET Core web API is running, you
can access the OpenAPI specification by navigating to the /openapi/v1.json
endpoint in your web browser. For example, if your API is hosted at
http://localhost:5000, you can view the OpenAPI specification at
http://localhost:5000/openapi/v1.json.

Scalar UI (Optional): While OpenAPI specification provides the raw JSON
format, you can enhance the developer experience by adding Scalar UI for a
more interactive documentation interface. To add Scalar UI, install the
package:

Then modify your Program.cs:

Benefits of Built-in OpenAPI Support

Standard Compliance: OpenAPI is an industry-standard specification for
describing REST APIs, ensuring better interoperability with various tools and
platforms.
Lightweight: The built-in OpenAPI support is more lightweight compared to
the previous Swagger implementation.
Modern Tooling: OpenAPI specifications can be consumed by various
modern tools for code generation, testing, and documentation.
Better Performance: The native implementation provides better
performance and reduced dependencies.

dotnet add package Scalar.AspNetCore --version 2.6.9

builder.Services.AddOpenApi();

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

Customizing OpenAPI Documentation

Modifying OpenAPI Settings: You can customize the OpenAPI
documentation by configuring options such as API title, version, description,
and adding custom metadata.
Adding XML Comments: You can include XML documentation comments
in your code to provide more detailed descriptions in the generated OpenAPI
specification.

Demo

We can use the previous restfulapi project to demonstrate the built-in OpenAPI
support in ASP.NET Core 9.0. First, let’s update the project to use OpenAPI:

1. Update the Program.cs file:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddOpenApi();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

}

// In-memory data store

var items = new List<string>();

for (int i = 1; i <= 5; i++)

{

 items.Add($"Item {i}");

}

// GET endpoint

app.MapGet("/items", () => items);

// POST endpoint

app.MapPost("/items", (string item) =>

{

 items.Add(item);

 return Results.Created($"/items/{items.Count - 1}", item);

});

// PUT endpoint

app.MapPut("/items/{id}", (int id, string item) =>

{

 if (id < 0 || id >= items.Count)

 {

 return Results.NotFound();

 }

You don’t need to add the builder.Services.AddOpenApi() line if you are using the
webapi template, as it is already included by default.

2. Run the project:

3. Access the OpenAPI specification:

Open a web browser and navigate to https://localhost:
<port>/openapi/v1.json.
You should see the OpenAPI specification in JSON format, which
provides a complete description of your API’s endpoints and models.

 items[id] = item;

 return Results.NoContent();

});

// DELETE endpoint

app.MapDelete("/items/{id}", (int id) =>

{

 if (id < 0 || id >= items.Count)

 {

 return Results.NotFound();

 }

 items.RemoveAt(id);

 return Results.Ok();

});

app.Run();

dotnet run --launch-profile https

Figure 2.5 OpenAPI specification JSON for restfulapi project.

4. Optional: Add Scalar UI for better visualization:

Install Scalar UI package:

Update your Program.cs to include Scalar UI:

dotnet add package Scalar.AspNetCore --version 2.6.9

Navigate to https://localhost:<port>/scalar/ to view the interactive API
documentation.

Figure 2.6 Scalar UI interface showing API documentation.

5. Testing the API:

You can use the OpenAPI specification with tools like Postman,
Insomnia, or any OpenAPI-compatible client.
Import the OpenAPI specification URL (https://localhost:
<port>/openapi/v1.json) into your preferred API testing tool.

Since we have used Scalar UI, you can also test the API directly from the Scalar
UI interface. Click on the endpoints to see their details, and you can even execute
requests directly from the documentation interface.

Click /itens endpoint to see the details of the GET request. You can also click on
the Test Request button to execute the request directly from the documentation
interface.

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

Figure 2.7 Testing API using Scalar UI.

You will have a form like Figure 2.8. Click the Send button to execute the request.
You should see a response displaying the list of items.

Figure 2.8 Make /items request from Scalar UI.

6. OpenAPI and Postman

If you prefer to use Postman, you can import the OpenAPI specification directly
into Postman:

Open Postman and click on the Import button.
Select the Link tab and paste the OpenAPI specification URL
(https://localhost:<port>/openapi/v1.json).
Click Continue and then Import to load the API endpoints into Postman.
You can now test the API endpoints directly from Postman, using the
imported OpenAPI specification to guide you through the available
operations.
If you got failed to import the OpenAPI specification, you can also export the
OpenAPI specification as a JSON file and import it into Postman.

2.4.1 Conclusion

The transition to built-in OpenAPI support in ASP.NET Core 9.0’s webapi template
represents a significant improvement in API documentation and tooling. This
change provides developers with a more standardized, lightweight, and performant
approach to API documentation. The OpenAPI specification ensures better
compatibility with modern development tools and provides a solid foundation for
API-first development practices. Whether you are building a new API or
migrating existing services to ASP.NET Core 9.0, the integrated OpenAPI support
offers enhanced developer experience and better industry standard compliance.

2.5 Exercise 4: Buidling a Calculator Service

In this lab, you’ll create a basic calculator web service using ASP.NET Core 9
Minimal API. You’ll learn how to handle different types of HTTP requests and
perform basic arithmetic operations, gaining a foundation in this innovative
approach to .NET development.

2.5.1 Objective

Develop a basic calculator web service using ASP.NET Core 9 Minimal API that
supports basic arithmetic operations.

2.5.2 Requirements

.NET 9.0 SDK installed
A preferred code editor (e.g., Visual Studio, Visual Studio Code)

2.5.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Run the following command to create a new ASP.NET Core Minimal API
project:

2. Define the Numeric Record

Open the Program.cs file in your code editor.

Define the Numeric record at the last of the file:

3. Implement the Calculator Endpoints Using Numeric

Modify the existing calculator endpoints to use the Numeric record. For
addition, subtraction, multiplication, and division, the input and output are
represented by the Numeric record.

Open the Program.cs file in your code editor.

Add endpoints for the four addition arithmetic operation:

mkdir calculatorapi

cd calculatorapi

dotnet new webapi

code .

record Numeric(double Number1, double Number2, double Result = 0);

...

var calculatorApi = app.MapGroup("/api/calculator");

calculatorApi.MapPost("/add", (Numeric numbers) =>

{

 var result = numbers.Number1 + numbers.Number2;

 return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

...

Add the following code snippet for subtraction:

Add the following code snippet for multiplication:

Add the following code snippet for division:

In this setup, each arithmetic operation takes a Numeric record as input,
performs the calculation, and returns a new Numeric record with the result.

3. Build and Run the Application

Use the command prompt or terminal to build and run the project:

dotnet run

You can also run the application with https profile:

dotnet run --launch-profile https

4. Modify .http File for Testing

Modify a content of calculatorapi.http file.

@calculatorapi_HostAddress = http://localhost:5003

###

POST {{calculatorapi_HostAddress}}/api/calculator/add

calculatorApi.MapPost("/subtract", (Numeric numbers) =>

{

 var result = numbers.Number1 - numbers.Number2;

 return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

calculatorApi.MapPost("/multiply", (Numeric numbers) =>

{

 var result = numbers.Number1 * numbers.Number2;

 return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

calculatorApi.MapPost("/divide", (Numeric numbers) =>

{

 if (numbers.Number2 == 0)

 {

 return Results.BadRequest("Cannot divide by zero");

 }

 var result = numbers.Number1 / numbers.Number2;

 return Results.Ok(new Numeric(numbers.Number1, numbers.Number2, result));

});

Accept: application/json

Content-Type: application/json

{

 "Number1": 10,

 "Number2": 5

}

###

POST {{calculatorapi_HostAddress}}/api/calculator/subtract

Accept: application/json

Content-Type: application/json

{

 "Number1": 10,

 "Number2": 5

}

###

POST {{calculatorapi_HostAddress}}/api/calculator/multiply

Accept: application/json

Content-Type: application/json

{

 "Number1": 10,

 "Number2": 5

}

###

POST {{calculatorapi_HostAddress}}/api/calculator/divide

Accept: application/json

Content-Type: application/json

{

 "Number1": 10,

 "Number2": 5

}

Save the file.

4. Testing the Calculator Service

Use tools like Postman to test your calculator service by sending POST
requests.

For each operation, send a JSON object in the request body, e.g., { "Number1":
5, "Number2": 3 }, and specify the content type as application/json.

Test the following endpoints:

Addition: http://localhost:5003/api/calculator/add
Subtraction: http://localhost:5003/api/calculator/subtract
Multiplication: http://localhost:5003/api/calculator/multiply
Division: http://localhost:5003/api/calculator/divide

You can also test using the REST Client extension.

Click the Send Request button to test the API.

You should see a response displaying the result of the operation.

Figure 2.9 Response from server using REST Client extension.

2.5.4 Conclusion

In this lab, you have created a calculator web service using ASP.NET Core 9
Minimal API with a focus on using a record type (Numeric) for clean and efficient
data handling. This approach demonstrates the power of records in simplifying
parameter passing and result representation in web APIs.

2.6 Exercise 5: Upload and Download File Web

In this exercise, you’ll learn how to implement file upload and download
functionality using ASP.NET Core 9.0 Minimal API. Handling files is a common
requirement in modern web applications, and this lab will guide you through
setting up endpoints for uploading files to the server and downloading them from
a designated directory. You’ll gain practical experience with multipart form data,
file streams, and serving static content, all within the context of a minimal API
project.

2.6.1 Objective

Develop an ASP.NET Core 9 Web API that allows users to upload and download
files. This lab demonstrates handling file streams and setting appropriate API
endpoints.

2.6.2 Requirements

.NET 9.0 SDK installed
A preferred code editor (e.g., Visual Studio, Visual Studio Code)
Basic knowledge of ASP.NET Core

2.6.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Create a new project using the webapi template:

Open the project in your code editor:

2. Create uploads folder

Create a new folder named uploads in the root of web root directory wwwroot.

If you don’t have wwwroot folder, create it inside the root of the project.

The wwwroot folder is used to serve static files, such as HTML, CSS,
JavaScript, and images, in ASP.NET Core Minimal API applications.

You can see the project structure in your code editor:

mkdir fileapi

cd fileapi

dotnet new webapi

code .

Figure 2.10 Project structure of the ASP.NET Core Minimal API project.

3. Disable Atiforgery

Since we use multipart/form-data for file upload, we need to disable the
antiforgery token validation.

Open the Program.cs file in your code editor.

4. Create the API for File Upload to Use uploads

Open the Program.cs file in your code editor.

Import the necessary namespaces at the top of the file:

Add a service for file upload, pointing to the wwwroot/uploads directory:

...

builder.Services.AddAntiforgery();

var app = builder.Build();

app.UseAntiforgery();

...

using Microsoft.AspNetCore.Mvc;

var fileApi = app.MapGroup("/api/file");

fileApi.MapPost("/upload", async (IFormFile file,[FromForm]string description) =>

{

 var uploadsFolderPath = Path.Combine(app.Environment.WebRootPath, "uploads");

 Directory.CreateDirectory(uploadsFolderPath);

 var filePath = Path.Combine(uploadsFolderPath, file.FileName);

 using (var stream = new FileStream(filePath, FileMode.Create))
 {

We use .DisableAntiforgery() to disable the antiforgery token validation for this
endpoint.

5. Create the API for File Download to Use wwwroot/uploads

Add the following code snippet for the file download endpoint, pointing to
the wwwroot/Uploads directory:

6. Build and Run the Application

In the terminal, build and run the project using dotnet run.

We can also run the application with https profile:

7. Modify .http File for Testing

Open the fileapi.http file in your code editor.

Write the following scripts

@fileapi_HostAddress = https://localhost:7010

Upload File

 await file.CopyToAsync(stream);

 }

 return Results.Ok(new { FilePath = $"/Uploads/{file.FileName}", Description = des
}).DisableAntiforgery();

fileApi.MapGet("/download/{fileName}", async (string fileName) =>

{

 var filePath = Path.Combine(app.Environment.WebRootPath, "Uploads", fileName);

 if (!File.Exists(filePath))

 {

 return Results.NotFound("File not found.");

 }

 var memoryStream = new MemoryStream();

 using (var stream = new FileStream(filePath, FileMode.Open, FileAccess.Read))

 {

 await stream.CopyToAsync(memoryStream);

 }

 memoryStream.Position = 0;

 return Results.File(memoryStream, "application/octet-stream", fileName);
});

dotnet run

dotnet run --launch-profile https

POST {{fileapi_HostAddress}}/api/file/upload

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

Accept: application/json

------WebKitFormBoundary7MA4YWxkTrZu0gW

Content-Disposition: form-data; name="description"

This is a test file

------WebKitFormBoundary7MA4YWxkTrZu0gW

Content-Disposition: form-data; name="file"; filename="example.txt"

Content-Type: text/plain

< ./example.txt

------WebKitFormBoundary7MA4YWxkTrZu0gW--

Download File

GET {{fileapi_HostAddress}}/api/file/download/example.txt

Save the file.

We also create a file named example.txt in the root of the project.

Just write some text in the file.

8. Testing the API

Use a tool like Postman or a similar HTTP client to test the file upload and
download functionality.

If you use Postman, you follow these steps:

Import https://localhost:7201/openapi/v1.json to Postman to get the API
endpoints.
Create a new request in Postman or open a new tab.
Set the method to POST.
Enter the URL of your file upload endpoint, which will be something
like https://localhost:7201/api/file/upload. Change this URL to match your
API’s URL.
In the ‘Headers’ section, you don’t need to explicitly set the Content-Type
to multipart/form-data as Postman will automatically add it when you
select a file to upload.
Go to the Body tab in Postman.
Select form-data.
In the key field, select File from the dropdown.
Click on the Select Files button or simply drag and drop the file into the
key-value area to attach the file you want to upload.
Add key description and value This is a test file.

Click the Send button to execute the request.
You should receive a response indicating that the file upload was
successful.

Figure 2.11 Response from server.

You can also test using the REST Client extension.
Click the Send Request button to test the API.

Figure 2.12 Response from server using REST Client extension.

2.6.4 Conclusion

In this lab, you’ve set up a minimal API for file uploading and downloading in
ASP.NET Core 9, utilizing the wwwroot directory for storing files. This approach is
typical in web applications for managing static content, including files uploaded
by users.

2.7 Exercise 6: Exception Handling and Logging

In this lab, you’ll enhance your ASP.NET Core 9.0 Minimal API project to handle
various HTTP errors and implement logging to a file. Exception handling and
logging are crucial for building robust APIs that can effectively communicate
errors to clients and maintain a log for troubleshooting and monitoring.

2.7.1 Objective

Enhance the ASP.NET Core 9.0 Minimal API project to handle various HTTP
errors (500, 502, 404, 400) and implement logging to a file.

2.7.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
REST Client extension installed in Visual Studio Code for testing
A package for logging to a file, such as Serilog

2.7.3 Lab Steps

1. Set Up the Project and Serilog

Create a new project (if not already created) and navigate to the project
directory as previously described.

Open the project in your code editor.

Install Serilog via NuGet:

Configure Serilog in Program.cs:

mkdir exceptionhandlingapi

cd exceptionhandlingapi

dotnet new webapi

code .

dotnet add package Serilog

dotnet add package Serilog.AspNetCore

dotnet add package Serilog.Extensions.Logging

dotnet add package Serilog.Sinks.File

dotnet add package Serilog.Sinks.Console

using Microsoft.AspNetCore.Diagnostics;

using Microsoft.AspNetCore.Mvc;

using Serilog;

var builder = WebApplication.CreateBuilder(args);

builder.Logging.ClearProviders();

...

// Configure Serilog

var logger = new LoggerConfiguration()

 .WriteTo.Console()

 .WriteTo.File("log-.txt", rollingInterval: RollingInterval.Day)

 .CreateLogger();

// Register Serilog

builder.Logging.AddSerilog(logger);

// Other configurations...

2. Implement Custom Error Handling and Responses

Modify the Program.cs to handle different types of errors:

3. Create Endpoints to Simulate Errors

Add endpoints to simulate different errors:

var app = builder.Build();

app.UseExceptionHandler("/error");

app.MapGet("/error", (HttpContext httpContext) =>

{

 var exceptionFeature = httpContext.Features.Get< IExceptionHandlerFeature>();
 var exception = exceptionFeature?.Error;

 var problemDetails = new ProblemDetails

 {

 Status = 500,

 Title = "An error occurred while processing your request."

 };

 if (exception is FileNotFoundException)

 {

 problemDetails.Status = 404;

 problemDetails.Title = "File not found.";

 }

 else if (exception is InvalidOperationException)

 {

 problemDetails.Status = 400;

 problemDetails.Title = "Invalid operation.";

 }

 // Logging the exception

 app.Logger.LogError(exception, "An error occurred: {ErrorMessage}", exception.Me

 return Results.Problem(problemDetails.Title, statusCode: problemDetails.Status);
});

// Define other routes...

app.MapGet("/causeinternalerror", () =>

{

 throw new Exception("Internal server error.");

});

app.MapGet("/causefileerror", () =>

{

 throw new FileNotFoundException("Example file not found.");

});

app.MapGet("/causeinvalidoperation", () =>

{

 throw new InvalidOperationException("Invalid operation example.");

4. Build and Run the Application

Build and run your project using dotnet run.

You can also run the application with https profile:

dotnet run --launch-profile https

5. Create the .http File for Testing Different Errors

Create ExceptionHandlingApi.http with the following content:

@exceptionhandlingapi_HostAddress = http://localhost:5100

GET {{exceptionhandlingapi_HostAddress}}/weatherforecast

Accept: application/json

Simulate Internal Server Error

GET {{exceptionhandlingapi_HostAddress}}/causeinternalerror

Simulate File Not Found Error

GET {{exceptionhandlingapi_HostAddress}}/causefileerror

Simulate Invalid Operation Error

GET {{exceptionhandlingapi_HostAddress}}/causeinvalidoperation

Change port 5100 to the port number displayed in the command prompt or
terminal.

6. Testing Error Handling and Logging

Use the REST Client extension in Visual Studio Code to test each endpoint.

Click the Send Request button to test the API.

You should see a response displaying the error message.

});

// Other routes...

Check the log-xxxxxx file in your project directory for logged error details.

Figure 2.13 Log file.

2.7.4 Conclusion

In this modified lab, you have enhanced an ASP.NET Core 9.0 Minimal API
application to handle different HTTP errors and log exceptions to a file. This
approach is vital for building robust APIs that can effectively communicate errors
to clients and maintain a log for troubleshooting and monitoring.

2.8 Exercise 7: Middleware and Filters

In this lab, you’ll learn how to implement custom middleware and filters in
ASP.NET Core 9.0 Minimal API. You’ll explore the use of middleware for request
processing and handling, as well as the use of filters for request filtering and
response formatting.

A middleware is a component that is executed on every request in the ASP.NET
Core pipeline. It can be used to perform actions such as logging, authentication,
and error handling. Filters are used to apply cross-cutting concerns to specific
endpoints or controllers, such as authorization, caching, and response formatting.

2.8.1 Objective

Implement custom middleware and demonstrate the use of filters in an ASP.NET
Core 9.0 Minimal API project.

2.8.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
REST Client extension installed in Visual Studio Code for testing

2.8.3 Lab Steps

1. Create a New ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Create a new ASP.NET Core Minimal API project:

Open the project in your code editor:

2. Implement Custom Middleware

Open the project in your code editor.

Modify the Program.cs to include a simple logging middleware:

We can also create a middleware class.

Create a new file named LoggingMiddleware.cs in the root of the project.

Add the following code snippet:

mkdir middlewareapi

cd middlewareapi

dotnet new webapi

code .

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

// Custom Middleware for Logging

app.Use(async (context, next) =>

{

 Console.WriteLine("Request Incoming");

 await next();

 Console.WriteLine("Response Outgoing");

});

// Define routes

app.MapGet("/", () => "Hello World");

app.Run();

using Microsoft.AspNetCore.Http;

using System.Threading.Tasks;

public class LoggingMiddleware

{

 private readonly RequestDelegate _next;

 public LoggingMiddleware(RequestDelegate next)

 {

 _next = next;

 }

 public async Task InvokeAsync(HttpContext context)

 {

 Console.WriteLine("LoggingMiddleware>> Request Incoming");

 await _next(context);

 Console.WriteLine("LoggingMiddleware>> Response Outgoing");

In the Program.cs file, modify the Main method to use the middleware. Write
these after builder.Build():

3. Implement a Simple Filter (Optional in Minimal API)

In Minimal APIs, filters as known in MVC aren’t directly available.
However, you can achieve similar functionality using middleware or service
injection in endpoint delegates.
For simplicity, we’ll focus on middleware in this lab. (For advanced
scenarios, consider converting to a Controller-based approach to use filters.)

4. Build and Run the Application

Build and run the project using:

You can also run the application with https profile:

5. Create the .http File for Testing

Create middlewareapi.http with the following content to test the middleware:

@middlewareapi_HostAddress = http://localhost:5104

GET {{middlewareapi_HostAddress}}/weatherforecast

Accept: application/json

###

Change port 5104 to the port number displayed in the command prompt or
terminal.

6. Testing the Middleware

Open middlewareapi.http in Visual Studio Code.

 }

}

...

// Custom Middleware for Logging

app.UseMiddleware<LoggingMiddleware>();

...

dotnet run

dotnet run --launch-profile https

Use the REST Client extension to send the request.
Observe the console output to see the middleware in action.
You should see the following output in the console.

Figure 2.14 Response from server using REST Client extension.

Another way to test the middleware is to use the Swagger UI.
Open a web browser and navigate to https://localhost:5062/swagger.
Change port 5062 to the port number displayed in the command prompt or
terminal.

2.8.4 Conclusion

In this lab, you’ve implemented a custom middleware in an ASP.NET Core 9.0
Minimal API application. This middleware logs messages to the console before
and after processing HTTP requests. While Minimal APIs don’t support filters in
the same way as MVC, middleware offers a powerful alternative for request
processing and handling.

3 Accessing SQL and NoSQL
Databases
3.1 Introduction

Welcome to the comprehensive guide on accessing SQL and NoSQL databases in
.NET 9.0. In today’s data-driven world, the ability to efficiently interact with
various types of databases is essential for any application. This chapter is crafted
to equip you with the necessary skills and knowledge to seamlessly integrate and
manipulate data stored in both SQL and NoSQL databases using the latest .NET
technologies.

Understanding the Database Landscape

SQL Databases: We start by exploring SQL databases, the traditional and
widely used systems for managing structured data. Here, you’ll learn about
establishing connections, executing SQL queries, and handling transactions
using .NET’s rich set of libraries and tools.
NoSQL Databases: Transitioning from the structured world of SQL, we
delve into the realm of NoSQL databases. These systems offer flexibility and
scalability for handling unstructured data, and we’ll cover how to interact
with popular NoSQL databases using .NET.

Key Concepts and Technologies

Entity Framework Core: A significant part of this chapter will focus on
Entity Framework Core, .NET’s flagship ORM, which simplifies data access
in both SQL and NoSQL databases.
ADO.NET: For SQL databases, ADO.NET remains a cornerstone, and we’ll
revisit its powerful features and how they integrate into modern .NET
applications.
NoSQL Client Libraries: We’ll also explore various client libraries
available for NoSQL databases, discussing how to choose and work with
them effectively in .NET.

Practical Examples and Best Practices

Hands-On Examples: The chapter will be rich in practical examples,
demonstrating CRUD operations, complex queries, and performance
optimization techniques in real-world scenarios.
Best Practices: As we navigate through different database technologies,
we’ll emphasize best practices in database design, query optimization, and
maintaining data integrity and security.

Preparing for the Hands-On Labs

The following sections and hands-on labs are designed to be interactive and
incremental, ensuring a deep and practical understanding of each topic. Whether
you are developing a new application or maintaining an existing one, this chapter
will provide you with the tools and insights needed to work effectively with SQL
and NoSQL databases in .NET 9.0.

By the end of this chapter, you will be well-equipped to make informed decisions
about database technologies and implement robust data access solutions in your
.NET applications. Let’s embark on this journey to master the art of database
interaction in the modern .NET ecosystem.

3.2 .NET Entity Framework Core

Entity Framework Core 9.0 is the latest version of Microsoft’s Object-Relational
Mapping (ORM) framework, providing a powerful and flexible way to interact
with databases in .NET applications. EF Core supports two primary development
approaches: Code First and Database First. Each has its unique advantages and use
cases.

1. Code First Approach

Overview: In the Code First approach, developers define database models
and relationships using C# classes. EF Core then generates the database
schema based on these models. This approach is popular in scenarios where
the database schema is initially unknown or subject to frequent changes.

Getting Started:

Define Models: Create C# classes to represent entities. Each class
typically corresponds to a table in the database.
Define DbContext: Create a class that derives from DbContext. This class
acts as a session with the database, allowing querying and saving data.

Configuration: Use Data Annotations or Fluent API within the DbContext
to configure models, relationships, keys, and other constraints.

Migrations: EF Core migrations track changes to the model and update the
database schema accordingly. Use commands like dotnet ef migrations add and
dotnet ef database update to manage database changes.

Benefits:

Full control over the database schema through code.
Seamless integration with version control systems.
Ideal for Agile development and rapid prototyping.

2. Database First Approach

Overview: The Database First approach starts with an existing database.
Developers use EF Core tools to generate C# classes that map to the database
tables, views, and stored procedures. This approach is suitable when working
with a legacy database or a database designed by a separate team.

Getting Started:

Scaffold DbContext: Use the EF Core command-line tools to scaffold a
DbContext and entity classes from the existing database using the dotnet ef
dbcontext scaffold command.
Customize Models (if needed): Modify the generated classes to better
fit your application’s needs, though be cautious as customizations might
be overwritten if scaffolding is repeated.

Maintaining Synchronization: Keep the entity classes and the database
schema in sync. Changes to the database require re-scaffolding and potential
manual adjustments to the entity classes.

Benefits:

Quick setup for applications built around existing databases.
Reduces the need for manual coding of the data access layer.
Ideal for projects where database schema is managed by a separate
database administration team or tool.

Best Practices and Considerations

Version Control: Migrations in the Code First approach should be
committed to version control to track changes over time.
Database Updates: In the Database First approach, be cautious about
database schema changes as they might require re-scaffolding and code
adjustments.
Performance: Regardless of the approach, pay attention to performance
implications of your design choices, like lazy loading, eager loading, and the
efficiency of generated SQL queries.

Entity Framework Core 9.0 provides robust support for both Code First and
Database First approaches, catering to different project requirements and stages.
Understanding the strengths and limitations of each approach is key to effectively
managing your application’s data layer. Whether you are starting from scratch
with a new database design or integrating with an existing database, EF Core
offers the tools and flexibility needed for modern .NET data access.

3.3 Entity Framework Core tools

Entity Framework Core (EF Core) tools are a set of command-line tools that
simplify the development and maintenance of EF Core applications. These tools
are available as a .NET global tool, which can be installed using the following
command:

Once installed, you can use the dotnet ef command to run EF Core commands. For
example, to list all available commands, use:

To update the EF Core tools to the latest version, use:

We’ll use EF Core tools throughout this chapter to scaffold database models,
generate migrations, and perform other tasks.

3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET
Core Minimal API

dotnet tool install --global dotnet-ef

dotnet ef -h

dotnet tool update --global dotnet-ef

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in
an ASP.NET Core Minimal API project. You’ll create a simple RESTful service
that performs CRUD operations on a SQL Server database. You’ll also learn how
to use EF Core migrations to create and update the database schema.

In this lab, we use Code First approach to create the database schema.

3.4.1 Objective

Integrate Entity Framework Core 9.0 with ASP.NET Core Minimal API to create a
simple RESTful service that performs CRUD operations on a database.

3.4.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
REST Client extension installed in Visual Studio Code for testing
SQL Server or another EF Core compatible database

3.4.3 Lab Steps

1. Set Up the ASP.NET Core Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Install Entity Framework Core

Install the necessary EF Core packages via NuGet. For SQL Server and In-
MemoryDB, use:

mkdir efcoredb

cd efcoredb

dotnet new webapi

code .

3. Create a Model and DbContext

In your project, create a new folder named Models.

Inside Models, create a file Product.cs with the following content:

Inside Models, create a file AppDbContext.cs:

4. Configure DbContext in Program.cs

In Program.cs, configure EF Core:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.InMemory

dotnet add package Microsoft.EntityFrameworkCore.Design

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace EFCoreDb.Models

{

 public class Product

 {

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Name { get; set; }

 public decimal Price { get; set; }

 }

}

using Microsoft.EntityFrameworkCore;

namespace EFCoreDb.Models

{

 public class AppDbContext : DbContext

 {

 public AppDbContext(DbContextOptions<AppDbContext> options)

 : base(options)

 {

 }

 public DbSet<Product> Products { get; set; }

 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 // Define precision for decimal property

 modelBuilder.Entity<Product>()

 .Property(product => product.Price)

 .HasPrecision(18, 2);

 }

}

using EFCoreDb Models;

In appsettings.json and appsettings.Development.json files, add database
configuration with the following content:

Change the connection string to match your database configuration.

5. Implement CRUD Operations

In Program.cs, implement GET endpoints for Product:

using EFCoreDb.Models;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddDbContext<AppDbContext>(options => {

 var useInMemoryDb = builder.Configuration.GetValue<bool>("UseInMemoryDatabase");

 if (useInMemoryDb)

 {

 options.UseInMemoryDatabase("TrainingDB");

 }

 else

 {

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB"));

 }

});

var app = builder.Build();

// Configure the HTTP request pipeline.

// ...

{

 "UseInMemoryDatabase": true,

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123"

 }

}

app.MapGet("/products", async (AppDbContext dbContext) =>

 await dbContext.Products.ToListAsync());

app.MapGet("/products/{id}", async (AppDbContext dbContext, int id) =>

{

 var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync
 return Results.Ok(product);

});

app.MapPost("/products", async (AppDbContext dbContext, Product product) =>

{

 dbContext.Products.Add(product);

 await dbContext.SaveChangesAsync();

 return Results.Created($"/products/{product.Id}", product);

});

The following code is for the update and delete endpoints:

Save the file.

Next, we migrate the database.

6. Set Up the Database

Ensure your connection string in appsettings.json and appsettings.Development.json
are correct.
If you are using SQL Server:

Create a database named database based on the connection string.

Create a username and password for the database.

Change value "UseInMemoryDatabase": true, to "UseInMemoryDatabase": false, in
appsettings.json and appsettings.Development.json.

Use EF Core migrations to create the database:

app.MapPut("/products/{id}", async (AppDbContext dbContext, Product product, int id)
{

 var p = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync();

 if(p != null)

 {

 p.Price = product.Price;

 if(!string.IsNullOrEmpty(product.Name))

 p.Name = product.Name;

 dbContext.Products.Update(p);

 await dbContext.SaveChangesAsync();

 }

 return Results.Ok(p);

});

app.MapDelete("/products/{id}", async (AppDbContext dbContext, int id) =>

{

 var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync
 if (product != null)

 {

 dbContext.Products.Remove(product);

 await dbContext.SaveChangesAsync();

 }

 return Results.Ok(product);

});

dotnet ef migrations add InitialCreate

dotnet ef database update

After running the above commands, you should see a new database
based your database connection string in your SQL Server instance.

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, efcoredb.csproj.

If you are using In-Memory Database:
No additional setup is required.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.
This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

In Program.cs, add the following lines to configure Scalar UI:

8. Build and Run the Application

Use dotnet run to start the application.

You can also run the application with https profile:

dotnet run --launch-profile https

9. Create the .http File for Testing

Create a file EfCoreMinimalApi.http with test requests:

@efcoredb_HostAddress = http://localhost:5069

Get all

GET {{efcoredb_HostAddress}}/products

dotnet add package Scalar.AspNetCore

using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

dotnet run

Accept: application/json

Get by id

GET {{efcoredb_HostAddress}}/products/1

Accept: application/json

Create

POST {{efcoredb_HostAddress}}/products

Content-Type: application/json

{

 "name": "Product 1",

 "price": 100

}

###

PUT {{efcoredb_HostAddress}}/products/1

Content-Type: application/json

{

 "name": "Product 41edit",

 "price": 100

}

Delete by id

DELETE {{efcoredb_HostAddress}}/products/2

Accept: application/json

Change the port number to match your application’s port number.

10. Testing the API

Use the REST Client extension in Visual Studio Code to send requests.

Open the efcoredb.http file and click on the “Send Request” link above each
request to test the API endpoints.

For adding a new product, you can modify the JSON body in the POST
request as needed.

To update and delete products, modify the PUT and DELETE requests
accordingly.

You can see my program output from REST client below:

Figure 3.1 REST Client for efcoredb program.

You also can use Scalar UI to test the API. Open browser and navigate to
https://<server>/scalar.

Figure 3.2 Scalar UI for efcoredb program.

3.4.4 Conclusion

In this lab, you’ve integrated Entity Framework Core 9.0 with Code First approach
on ASP.NET Core Minimal API to build a simple RESTful service. This service
demonstrates basic CRUD operations on a SQL Server database, showcasing how
to use EF Core in modern ASP.NET Core applications.

3.5 Exercise 9: EF Core 9.0 Database First and
ASP.NET Core Minimal API

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in
an ASP.NET Core Minimal API project. You’ll create a simple RESTful service
that performs CRUD operations on a SQL Server database. You’ll also learn how
to use EF Core migrations to create and update the database schema.

3.5.1 Objective

Utilize the Database First approach with Entity Framework Core 9.0 in an
ASP.NET Core Minimal API project. This lab will guide you through creating a
RESTful service that interfaces with an existing database.

3.5.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
REST Client extension installed in Visual Studio Code for testing
Access to a pre-existing SQL Server database
SQL Server Management Studio or another database management tool
(optional for database inspection)

3.5.3 Lab Steps

1. Create the Product Table in SQL Server

Open SQL Server Management Studio (SSMS) and connect to your SQL
Server instance.

Execute the following SQL script to create a Product table:

This script creates a new database named EfCoreLab and a Product table with Id,
Name, and Price columns.

You may create user and password for the database if you don’t want to use
admin user.

2. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

3. Install Entity Framework Core Tools

Install EF Core Design and SQL Server packages via NuGet:

Install the EF Core CLI tools globally (if not already installed):

4. Scaffold DbContext and Models from Existing Database

CREATE DATABASE EfCoreLab

GO

USE EfCoreLab

GO

CREATE TABLE Product (

 Id INT IDENTITY PRIMARY KEY,

 Name NVARCHAR(100) NOT NULL,

 Price DECIMAL(18, 2) NOT NULL

);

mkdir efcoredbfirst

cd efcoredbfirst

dotnet new webapi

code .

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Tools

dotnet tool install --global dotnet-ef

Assuming you have access to an existing SQL Server database, run the
following command to scaffold the DbContext and entity classes. Replace the
connection string and other options as needed:

Change the connection string db-connection-string to match your database
configuration. Here is an example:

If you use database access with Windows Authentication, you can use:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, efcoredbfirst.csproj.

This command creates C# models and a DbContext based on the schema of
the existing database in the Models directory.

You can see my output from the command below:

Figure 3.3 Output from scaffold command.

We have warnings about security on connection string. Open
EfCoreLabContext.cs, remove or comment out on protected override void
OnConfiguring..

We move our database connection string to appsettings.json and
appsettings.Development.json files.

dotnet ef dbcontext scaffold "db-connection-string" Microsoft.EntityFrameworkCore.Sql

"Server=localhost;Database=EfCoreLab;User Id=tester;Password=pass123;TrustServerCerti

"Server=localhost;Database=EfCoreLab;Trusted_Connection=True;TrustServerCertificate=T

In appsettings.json and appsettings.Development.json files, add database
configuration with the following content:

Change the connection string db-connection-string to match your database
configuration.

5. Configure the DbContext in Program.cs

In Program.cs, configure the DbContext:

6. Implement Basic CRUD Operations

Implement minimal API endpoints to perform CRUD operations. Use the
scaffolded DbContext and models to interact with the database.

We can copy the code from previous lab, Exercise 8, step 5.

Change the DbContext from AppDbContext to EfCoreLabContext.

The following is the code for GET endpoints:

{

 "ConnectionStrings": {

 "MyDB": "db-connection-string"

 }

}

using efcoredbfirst.Models;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddDbContext<EfCoreLabContext>(options =>

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

var app = builder.Build();

// Define routes and logic using the scaffolded DbContext and models

// ...

app.Run();

app.MapGet("/products", async (EfCoreLabContext dbContext) =>

 await dbContext.Products.ToListAsync());

app.MapGet("/products/{id}", async (EfCoreLabContext dbContext, int id) =>

{

 var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync
 return Results.Ok(product);

});

The following is the code for POST and PUT endpoints:

The following is the code for DELETE endpoint:

Save all files.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.
This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

In Program.cs, add the following lines to configure Scalar UI:

app.MapPost("/products", async (EfCoreLabContext dbContext, Product product) =>

{

 dbContext.Products.Add(product);

 await dbContext.SaveChangesAsync();

 return Results.Created($"/products/{product.Id}", product);

});

app.MapPut("/products/{id}", async (EfCoreLabContext dbContext, Product product, int
{

 var p = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync();

 if(p != null)

 {

 p.Price = product.Price;

 if(!string.IsNullOrEmpty(product.Name))

 p.Name = product.Name;

 dbContext.Products.Update(p);

 await dbContext.SaveChangesAsync();

 }

 return Results.Ok(p);

});

app.MapDelete("/products/{id}", async (EfCoreLabContext dbContext, int id) =>

{

 var product = await dbContext.Products.Where(p => p.Id == id).FirstOrDefaultAsync
 if (product != null)

 {

 dbContext.Products.Remove(product);

 await dbContext.SaveChangesAsync();

 }

 return Results.Ok(product);

});

dotnet add package Scalar.AspNetCore

8. Build and Run the Application

Use dotnet run to start the application.

You can also run the application with https profile:

dotnet run --launch-profile https

9. Create the .http File for Testing

Create a file efcoredbfirst.http in your project with test requests for the CRUD
operations:

@efcoredbfirst_HostAddress = http://localhost:5219

Get all

GET {{efcoredbfirst_HostAddress}}/products

Accept: application/json

Get by id

GET {{efcoredbfirst_HostAddress}}/products/1

Accept: application/json

Create

POST {{efcoredbfirst_HostAddress}}/products

Content-Type: application/json

{

 "name": "Product 1",

 "price": 100

}

###

PUT {{efcoredbfirst_HostAddress}}/products/1

Content-Type: application/json

{

 "name": "Product 41edit",

 "price": 100

}

Delete by id

DELETE {{efcoredbfirst_HostAddress}}/products/2

Accept: application/json

using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

###

10. Testing the API

Use the REST Client extension in Visual Studio Code to send requests and
interact with your database.

For adding a new product, you can modify the JSON body in the POST
request as needed.

To update and delete products, modify the PUT and DELETE requests
accordingly.

Figure 3.4 REST Client for efcoredbfirst program.

You also can use Scalar UI to test the API. Open browser and navigate to
https://<server>/scalar.
Click on the “Products” endpoint to see the available operations.

Figure 3.5 Scalar UI for efcoredbfirst program.

3.5.4 Conclusion

In this lab, you have used the Database First approach with EF Core 9.0 in an
ASP.NET Core Minimal API project. You’ve learned how to scaffold DbContext
and entity classes from an existing database, configure the DbContext, and create
endpoints to perform CRUD operations.

3.6 Introduction to Database Transactions

What is a Database Transaction?

A database transaction is a fundamental concept in database management systems,
representing a single unit of work that either fully succeeds or fully fails. It’s a
sequence of operations performed as a single logical unit, which means that if any
part of the transaction fails, the entire transaction fails, and the database state is
left unchanged.

In technical terms, a transaction is a series of read/write operations that begins
with the command BEGIN TRANSACTION and ends with either COMMIT (which saves the
changes) or ROLLBACK (which undoes all changes made during the transaction).

Why Are Database Transactions Important?

1. Atomicity: Transactions ensure atomicity, which means that all operations
within a transaction block are treated as a single unit. Either all operations are
executed successfully, or none are.

2. Consistency: Transactions help in maintaining the consistency of the
database. They ensure that the database transitions from one valid state to
another valid state, without exposing intermediate states to end users.

3. Isolation: Transactions provide isolation, meaning they can operate
independently without interference from other concurrent transactions, thus
preventing data corruption.

4. Durability: Once a transaction is committed, the changes it has made to the
data are permanent, even in the case of a system failure. This property
ensures data integrity and reliability.

How Are Transactions Implemented in Databases?

SQL Databases: In SQL databases like MySQL, SQL Server, and
PostgreSQL, transactions are managed using SQL commands. You start a
transaction with BEGIN TRANSACTION, make your database read and write
operations, and then either commit with COMMIT or rollback with ROLLBACK based
on the success or failure of the operations.

NoSQL Databases: Transaction support in NoSQL databases varies
depending on the database system. For example, MongoDB offers multi-
document transactions, which work similarly to transactions in SQL
databases, ensuring atomicity, consistency, isolation, and durability.

Entity Framework in .NET: In .NET applications using Entity Framework,
transactions are handled through the DbContext. You can start a transaction
using dbContext.Database.BeginTransaction(), perform data operations using the
DbContext, and then commit or rollback the transaction.

Handling in Application Code: Transactions can also be managed
programmatically in application code, where you can include business logic
to determine the success or failure of a transaction.

Understanding database transactions is crucial for building robust, reliable, and
consistent database-driven applications. They are key in ensuring data integrity
and consistency, especially in systems where multiple concurrent operations occur.

By properly implementing transactions, developers can prevent data anomalies,
maintain data accuracy, and enhance the overall stability of applications.

3.7 Exercise 10: Database Transaction

In this exercise, you’ll learn how to use Entity Framework Core 9.0 (EF Core) in
an ASP.NET Core Minimal API project. You’ll create a simple RESTful service
that performs database transaction on a SQL Server database. You’ll also learn
how to use EF Core migrations to create and update the database schema.

3.7.1 Objective

Demonstrate how to manage database transactions in an ASP.NET Core 9
Minimal API application using EF Core 9.0. This lab will use a code-first
approach with multiple tables to illustrate transaction handling.

3.7.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
SQL Server or another relational database
REST Client extension in Visual Studio Code for testing

3.7.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

mkdir efcoretrans

cd efcoretrans

dotnet new webapi

code .

2. Install Entity Framework Core

Install the necessary EF Core packages for your chosen database. For SQL
Server, use:

3. Define Models and DbContext

Create a folder named Models.

Inside Models, create classes for your entities. For illustration, let’s use Order.cs:

Write codes in Product.cs file with following codes:

Inside Models folder, create AppDbContext.cs:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Design

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace efcoretrans.Models;

public class Order

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string CustomerName { get; set; } = "";

 public List<Product> Products { get; set; }

}

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace efcoretrans.Models;

public class Product

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public decimal Price { get; set; }

}

using Microsoft.EntityFrameworkCore;

namespace efcoretrans.Models;

public class AppDbContext : DbContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options)

 : base(options) { }

4. Configure the DbContext in Program.cs

In Program.cs, configure the DbContext to use SQL Server:

5. Implement Transactional Operations

Implement an API endpoint that demonstrates a transactional operation
involving both Order and Product:

 public DbSet<Order> Orders { get; set; }

 public DbSet<Product> Products { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 // Define precision for decimal property

 modelBuilder.Entity<Product>()

 .Property(product => product.Price)

 .HasPrecision(18, 2);

 }

}

using efcoretrans.Models;

using Microsoft.EntityFrameworkCore;

//...

builder.Services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

//...

var app = builder.Build();

//...

app.MapPost("/createorder", async (AppDbContext dbContext, Order order) =>

{

 using var transaction = await dbContext.Database.BeginTransactionAsync();

 try

 {

 dbContext.Orders.Add(order);

 await dbContext.SaveChangesAsync();

 await transaction.CommitAsync();

 return Results.Ok(order);

 }

 catch

 {

 // Rollback transaction if there are any exceptions

 await transaction.RollbackAsync();

 throw;

 }

});

6. Create the Database and Apply Migrations

Configure your connection string in appsettings.json and
appsettings.Development.json.

Change the connection string to match your database configuration.

Create migrations and update the database:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, efcoretrans.csproj.

7. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.
This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

In Program.cs, add the following lines to configure Scalar UI:

8. Build and Run the Application

Compile and run your application using dotnet run.

{

 // ..

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=EfCoreLab; uid=tester;pwd=pass123; TrustServe
 },

 // ..

}

dotnet ef migrations add InitialCreate

dotnet ef database update

dotnet add package Scalar.AspNetCore

using Scalar.AspNetCore;

...

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

You can also run the application with https profile:

9. Create the .http File for Testing

Create a file efcoretrans.http in your project with test requests for the
transactional endpoint:

@efcoretrans_HostAddress = http://localhost:5038

POST {{efcoretrans_HostAddress}}/createorder

Content-Type: application/json

Accept: application/json

{

 "customerName": "Ahmad Lee",

 "products": [

 { "name": "Product 1", "price": 10.99 },

 { "name": "Product 2", "price": 15.50 }

]

}

###

10. Testing the Transactional Endpoint

Use the REST Client extension in Visual Studio Code to send requests and
validate the transactional behavior.
For adding a new product, you can modify the JSON body in the POST
request as needed.
To update and delete products, modify the PUT and DELETE requests
accordingly.

dotnet run --launch-profile https

Figure 3.6 REST Client for efcoretrans program.

We also use Scalar UI to test the API. Open browser and navigate to
https://<server>/scalar.

3.7.4 Conclusion

In this lab, you’ve learned how to manage database transactions in an ASP.NET
Core 9 Minimal API application using EF Core 9.0. You’ve implemented a
transactional operation that involves multiple tables, demonstrating how to ensure
data integrity in complex scenarios.

3.8 Introduction to NoSQL Databases

What is a NoSQL Database?

NoSQL databases, standing for “Not Only SQL” or “Non-SQL,” represent a wide
range of database technologies that were developed to handle the shortcomings of
traditional relational database management systems (RDBMS). Unlike RDBMS
which use tables to store data, NoSQL databases use various data models,

including document, key-value, wide-column, and graph formats. These databases
are known for their flexibility, scalability, and the ability to handle large volumes
of unstructured or semi-structured data.

Why Are NoSQL Databases Important?

1. Flexibility: NoSQL databases do not require a fixed schema, allowing the
data model to evolve over time and developers to store complex data
structures easily.

2. Scalability: They are designed to scale out by distributing data across
multiple servers, making them well-suited for cloud computing and big data
applications.

3. High Performance: NoSQL databases are optimized for specific data
models and access patterns, which can lead to higher performance for certain
types of applications, particularly those requiring large-scale data processing.

4. Handling Unstructured Data: With the increasing amount of unstructured
data (such as social media content, multimedia, text), NoSQL databases
provide efficient ways to store and retrieve such data.

How Are NoSQL Databases Implemented and Used?

Types of NoSQL Databases:
Document-Oriented: Such as MongoDB and CouchDB, store data in
JSON-like documents and are ideal for storing, retrieving, and managing
document-oriented information.
Key-Value Stores: Like Redis and DynamoDB, store data as a
collection of key-value pairs. They are highly efficient for lookups and
are useful for caching, sessions, and simple data models.
Wide-Column Stores: Including Cassandra and HBase, use columns to
store data. They are excellent for analyzing large datasets.
Graph Databases: Such as Neo4j and Amazon Neptune, are used for
storing and navigating relationships. They are ideal for social networks,
fraud detection, and recommendation systems.

Usage in Applications:
NoSQL databases are often used in big data applications, real-time web
applications, and in services requiring rapid development and iteration.
They are typically accessed through APIs provided by the database
vendors, with support for various programming languages.

Considerations:
Choose a NoSQL database based on the specific requirements of your
application, such as data model, scalability needs, and consistency
requirements.
Understand the trade-offs, as NoSQL databases often provide eventual
consistency rather than the strong consistency offered by traditional
RDBMS.

NoSQL databases offer a modern approach to data storage and management,
addressing the challenges and requirements of contemporary application
development. They provide developers with efficient ways to handle varied and
voluminous data, making them an essential component of the modern technology
landscape, especially in the realms of big data, real-time processing, and cloud
computing. Understanding when and how to effectively utilize NoSQL
technologies is crucial for developers and architects designing scalable and
flexible systems.

3.9 Exercise 11: NoSQL Database and ASP.NET Core
Minimal API

This lab offers practical experience in using MongoDB with ASP.NET Core,
demonstrating the advantages of NoSQL databases in handling dynamic, schema-
less data models and providing a foundation for building scalable and high-
performance web APIs.

3.9.1 Objective

Learn to integrate MongoDB, a NoSQL database, with an ASP.NET Core 9.0
Minimal API project. This lab will cover the steps to perform CRUD operations
on a MongoDB collection.

3.9.2 Requirements

.NET 9.0 SDK installed
MongoDB installed and running
Visual Studio Code or another code editor
MongoDB C# driver
REST Client extension installed in Visual Studio Code for testing

3.9.3 Lab Steps

1. Set Up the MongoDB Server

You can install MongoDB on your local machine or use a cloud-hosted
MongoDB service.

Download and install MongoDB Community Server from
https://www.mongodb.com/try/download/community.

In this exercise, we’ll use a local MongoDB server based Docker container.

You may use Docker Desktop. Install Docker Desktop from
https://www.docker.com/products/docker-desktop.

For demo purpose, we create docker-compose file to run MongoDB server
and mongo-express.

mongo-express is a web-based MongoDB admin interface written with
Node.js, Express, and Bootstrap3.

The following is a content of docker-compose.yml file

version: "3.8"

services:

 mongo:

 image: mongo:latest

 container_name: mongo

 environment:

 - MONGO_INITDB_ROOT_USERNAME=root

 - MONGO_INITDB_ROOT_PASSWORD=pass123

 restart: unless-stopped

 ports:

 - "27017:27017"

 networks:

 - mongonet

 volumes:

 - ./database/db:/data/db

 - ./database/dev.archive:/Databases/dev.archive

 - ./database/production:/Databases/production

 mongo-express:

 image: mongo-express

 container_name: mexpress

 environment:

 - ME_CONFIG_MONGODB_ADMINUSERNAME=root

 - ME_CONFIG_MONGODB_ADMINPASSWORD=pass123

 - ME_CONFIG_MONGODB_URL=mongodb://root:pass123@mongo:27017/?authSource=admin

 - ME_CONFIG_BASICAUTH_USERNAME=mexpress

 - ME_CONFIG_BASICAUTH_PASSWORD=pass123

 links:

 - mongo

https://www.mongodb.com/try/download/community
https://www.docker.com/products/docker-desktop

Now you can run this using this command.

You also can run it in background.

After running the command, you can access mongo-express from
http://localhost:8081.

Enter username and password as defined in docker-compose.yml file.

You can see my mongo-express below:

Figure 3.7 A dashboard of mongo-express application.

 restart: unless-stopped

 ports:

 - "8081:8081"

 networks:

 - mongonet

networks:

 mongonet:

docker-compose up

docker-compose up -d

2. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

3. Install MongoDB C# Driver

Install the MongoDB C# driver via NuGet:

4. Define a Model

Create a Models folder.

Inside Models, create a Product class:

5. Create a MongoDB Context

Inside Models, create MongoDbContext.cs:

mkdir mongodbapp

cd mongodbapp

dotnet new webapi

code .

dotnet add package MongoDB.Driver

using MongoDB.Bson;

using MongoDB.Bson.Serialization.Attributes;

namespace mongodbapp.Models;

public class Product

{

 [BsonId]

 [BsonRepresentation(BsonType.ObjectId)]

 public string? Id { get; set; }

 public string Name { get; set; } = "";

 public decimal Price { get; set; }

}

6. Configure the Service in Program.cs

In Program.cs, add the MongoDB context as a service:

Configure your connection string in appsettings.json and
appsettings.Development.json.

Change the connection string root and pass123 to match your database
configuration.

7. Implement CRUD Operations

Implement endpoints in Program.cs to perform CRUD operations:

using MongoDB.Driver;

namespace mongodbapp.Models;

public class MongoDbContext

{

 private readonly IMongoDatabase _database;

 public MongoDbContext(IConfiguration configuration)

 {

 var client = new MongoClient(configuration.GetConnectionString("MongoDb"));

 _database = client.GetDatabase("MongoDbDemo");

 }

 public IMongoCollection<Product> Products => _database.GetCollection<Product>("Pr
}

using mongodbapp.Models;

using MongoDB.Driver;

using MongoDB.Bson;

// ...

builder.Services.AddSingleton<MongoDbContext>();

// ...

{

 // ..

 "ConnectionStrings": {

 "MongoDb": "mongodb://root:pass123@localhost:27017/?authSource=admin"

 },

 // ..

}

// POST: Add a new product

app.MapPost("/products", async (MongoDbContext dbContext, Product product) =>

{

 await dbContext.Products.InsertOneAsync(product);

The following is the code for PUT and DELETE endpoints:

8. Add Scalar UI for OpenAPI (Optional)

To enhance the API documentation, you can add Scalar UI for OpenAPI.
This provides a user-friendly interface to interact with your API.

Install the Scalar UI package:

In Program.cs, add the following lines to configure Scalar UI:

 return Results.Created($"/products/{product.Id}", product);

});

// GET: Retrieve all products

app.MapGet("/products", async (MongoDbContext dbContext) =>

 await dbContext.Products.Find(product => true).ToListAsync());

// GET: Retrieve a single product by ID

app.MapGet("/products/{id}", async (MongoDbContext dbContext, string id) =>

{

 var product = await dbContext.Products.Find(p => p.Id == id).FirstOrDefaultAsync(
 return product is not null ? Results.Ok(product) : Results.NotFound();

});

// Additional endpoints for PUT and DELETE

// PUT: Update a product

app.MapPut("/products/{id}", async (MongoDbContext dbContext, Product product, string
{

 var filter = Builders<Product>.Filter.Eq(p => p.Id, id);

 var update = Builders<Product>.Update

 .Set(p => p.Name, product.Name)

 .Set(p => p.Price, product.Price);

 await dbContext.Products.UpdateOneAsync(filter, update);

 return Results.Ok(product);

});

// DELETE: Delete a product

app.MapDelete("/products/{id}", async (MongoDbContext dbContext, string id) =>

{

 var filter = Builders<Product>.Filter.Eq(p => p.Id, id);

 await dbContext.Products.DeleteOneAsync(filter);

 return Results.Ok();

});

dotnet add package Scalar.AspNetCore

using Scalar.AspNetCore;

...

9. Build and Run the Application

Use dotnet run to start the application.

You can also run the application with https profile:

dotnet run --launch-profile https

10. Create the .http File for Testing

Create a mongodbapp.http file in your project with test requests for CRUD
operations if it’s not exists:

@mongodbapp_HostAddress = http://localhost:5103

Add a New Product

POST {{mongodbapp_HostAddress}}/products

Content-Type: application/json

{

 "name": "Sample Product 1",

 "price": 9.99

}

Get All Products

GET {{mongodbapp_HostAddress}}/products

Get Product by ID

GET {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Update Product

PUT {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Content-Type: application/json

Accept: */*

{

 "id": "657599bc6d53d83cc2780da5",

 "name": "Updated Product",

 "price": 19.99

}

Delete Product

DELETE {{mongodbapp_HostAddress}}/products/657599bc6d53d83cc2780da5

Change the port number to match your application’s port number.

You may change the product ID 657599bc6d53d83cc2780da5 to match your data.

11. Testing the API

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

You also can use Scalar UI to test the API. Open browser and navigate to
https://<server>/scalar.

You can see my Scalar UI below:

Figure 3.8 Scalar UI for mongodbapp program.

Click Try it out button and click Execute button.

Use the REST Client extension in Visual Studio Code to send requests.

Click Send Request button.

You can see my output from REST client below:

Figure 3.9 REST Client for mongodbapp program.

3.9.4 Conclusion

In this lab, you’ve integrated MongoDB with an ASP.NET Core 9.0 Minimal API
project and performed CRUD operations using MongoDB as the data store. This
lab provides a hands-on experience in working with NoSQL databases in .NET
applications, showcasing MongoDB’s flexibility and ease of use for managing
unstructured data.

4 Deep Dive into Web Security
4.1 Introduction

ASP.NET Core Minimal APIs, introduced in ASP.NET Core 6, offer a
streamlined method for creating lightweight HTTP APIs. They are designed
to simplify and speed up the process of setting up APIs, reducing the need for
boilerplate code. Security in ASP.NET Core Minimal APIs encompasses
authentication, authorization, data protection, and ensuring secure
communication and data handling.

Why is Security in ASP.NET Core Minimal APIs Important?

1. Protect Sensitive Data: Securing APIs is crucial to protect sensitive
data from unauthorized access and breaches.

2. Compliance and Trust: Proper security measures ensure compliance
with legal and regulatory requirements and build trust with users.

3. Prevent Attacks: Security mechanisms help in preventing various types
of attacks like SQL injection, cross-site scripting (XSS), and others.

4. Secure Communication: Implementing security protocols like HTTPS
ensures that the data exchanged between the client and server is
encrypted and secure.

How to Implement Security in ASP.NET Core Minimal APIs?

1. Authentication and Authorization:
Authentication: Determine the user’s identity using various
methods like JWT tokens, OAuth, or basic authentication.
Authorization: Ensure that an authenticated user has the right
permissions to access resources. This can be role-based, policy-
based, or claim-based authorization.
Example: Implementing JWT token-based authentication and
securing endpoints with [Authorize] attribute.

2. Data Protection:
Protect sensitive data using ASP.NET Core’s Data Protection APIs.
Encrypt sensitive information in configuration files.

3. Securing Data Transfer:
Enforce the use of HTTPS to secure data in transit.
Implement proper CORS policies to control cross-origin requests.

4. Input Validation and Sanitization:
Validate and sanitize user input to prevent injection attacks.
Use model validation to enforce data integrity.

5. Dependency Management:
Regularly update dependencies to incorporate security patches.
Use only trusted libraries and packages.

6. Logging and Monitoring:
Implement logging to record significant events and potential
security incidents.
Monitor API usage and behavior to detect anomalies.

7. Rate Limiting:
Implement rate limiting to prevent abuse and denial-of-service
attacks.

Security in ASP.NET Core Minimal APIs is not just an optional feature but a
fundamental aspect that needs to be ingrained throughout the API
development lifecycle. From authenticating users to protecting data and
ensuring secure communication, each aspect plays a crucial role in
safeguarding the API from various security threats. As such, understanding
and implementing robust security practices is essential for developing reliable
and secure ASP.NET Core Minimal APIs.

4.2 Exercise 12: Authentication and Authorization

In this lab, we’ll implement authentication and authorization in an ASP.NET
Core Minimal API application. This lab covers user registration, login with
basic authentication, token generation, and accessing user profiles with token
authentication. We’ll use Entity Framework Core with a code-first approach
for user data and bcrypt for password hashing.

4.2.1 Objective

Implement authentication and authorization in an ASP.NET Core Minimal
API application. This lab covers user registration, login with basic
authentication, token generation, and accessing user profiles with token
authentication. We’ll use Entity Framework Core with a code-first approach
for user data and bcrypt for password hashing.

4.2.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
Entity Framework Core
A package for bcrypt, like BCrypt.Net-Next
A package for JWT (JSON Web Tokens), like
Microsoft.AspNetCore.Authentication.JwtBearer

4.2.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Install Required Packages

Install EF Core, bcrypt, and JWT packages:

mkdir secrestapi

cd secrestapi

dotnet new webapi

code .

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package BCrypt.Net-Next

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

Install the Scalar UI package:

3. Define Models and DbContext

Create a Models folder and define a ApiUser model on ApiUser.cs file:

We also create DTOs (Data Transfer Objects) for user registration and
login. These DTOs are used to transfer data between the client and
server.

Inside Models folder, write UserLogin.cs file and write the following code:

We also create UserToken.cs file as DTO for JWT token. This DTO is used
to transfer JWT token between the client and server.

dotnet add package Scalar.AspNetCore

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace secrestapi.Models;

public class ApiUser

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Username { get; set; } = "";

 public string Password { get; set; } = "";

 public string Name { get; set; } = "";

 public string Email { get; set; } = "";

}

namespace secrestapi.Models;

public class UserLogin

{

 public string UserName { get; set; } = "";

 public string Password { get; set; } = "";

}

namespace secrestapi.Models;

public class UserToken

{

 public string Token { set; get; } = "";

 public string ExpiredAt { set; get; } = "";

 public string Message { set; get; } = "";

}

Inside a Models folder and implement AppDbContext on AppDbContext.cs file:

4. Configure DbContext and JWT in Program.cs

Configure DbContext and add JWT authentication in Program.cs.

In Program.cs, configure the DbContext:

To generate JWT tokens, we need to add a secret key to the
configuration.

Then, we add authentication for bearer JWT token

Write this code before builder.Build()

using Microsoft.EntityFrameworkCore;

namespace secrestapi.Models;

public class AppDbContext : DbContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options) : base(options)

 public DbSet<ApiUser> Users { get; set; }

}

using secrestapi.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.Authentication.JwtBearer;

using Microsoft.AspNetCore.Authorization;

using Microsoft.IdentityModel.Tokens;

using System.Text;

using BC = BCrypt.Net.BCrypt;

using System.IdentityModel.Tokens.Jwt;

using System.Security.Claims;

using Microsoft.OpenApi.Models;

using Scalar.AspNetCore;

// ...

builder.Services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

// ...

// configure jwt

var key = builder.Configuration["AppSettings:Secret"];

var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd11234df4444sd
builder.Services.AddAuthentication(o =>

{

 o.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

We add authorization to enable authorization using the [Authorize]
attribute.

Since we activate the authorization, we need to add the OpenAPI to our
application.

We modify the builder.Services.AddOpenApi() method as follows:

 o.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

})

.AddJwtBearer(o =>

{

 o.RequireHttpsMetadata = false;

 o.SaveToken = true;

 o.TokenValidationParameters = new TokenValidationParameters

 {

 ValidateIssuerSigningKey = true,

 IssuerSigningKey = new SymmetricSecurityKey(keyBytes),

 ValidateIssuer = false,

 ValidateAudience = false

 };

});

var multiPolicyAuthorization = new AuthorizationPolicyBuilder(

 JwtBearerDefaults.AuthenticationScheme)

 .RequireAuthenticatedUser()

 .Build();

builder.Services.AddAuthorization(o => o.DefaultPolicy = multiPolicyAuthorizati

builder.Services.AddOpenApi(options =>

{

 options.AddDocumentTransformer((document, context, cancellationToken) =>

 {

 document.Info.Title = "Secure REST API";

 document.Info.Version = "v1";

 document.Info.Description = "A secure REST API with JWT authentication"

 // Add JWT security scheme

 document.Components ??= new OpenApiComponents();

 document.Components.SecuritySchemes["Bearer"] = new OpenApiSecuritySchem
 {

 Type = SecuritySchemeType.Http,

 Scheme = "bearer",

 BearerFormat = "JWT",

 Description = "Enter JWT Bearer token"

 };

 return Task.CompletedTask;

 });

});

We also add Scalar UI to our application. Write this code before
builder.Build()

Last, we activate Scalar UI, uthentication and authorization in our
application. Write this code after builder.Build()

5. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in
appsettings.json and appsettings.Development.json.

Change the connection string to match your database configuration.

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference(options =>

 {

 options.Title = "Secure REST API";

 options.Theme = ScalarTheme.Purple;

 options.ShowSidebar = true;

 options.DefaultHttpClient = new(ScalarTarget.CSharp, ScalarClient.HttpCl
 });

}

// ...

app.UseHttpsRedirection();

// add these lines

app.UseAuthentication();

app.UseAuthorization();

{

 // ..

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123; Tru
 },

 "AppSettings": {

 "Secret": "aaaaabbbbbcccccddddd11234df4444sd"

 }

 // ..

}

You can also change the secret key of JWT token. Recommend to use a
random string with 32 characters.

Create migrations and update the database:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, secrestapi.csproj.

6. Implement Registration and Login Endpoints

Implement a registration endpoint to create new users with hashed
passwords.

In Program.cs, write this code for registration endpoint

Implement a login endpoint that authenticates users with database
authentication and returns a JWT token.

dotnet ef migrations add InitialCreate

dotnet ef database update

app.MapPost("/register", async (AppDbContext dbContext, ApiUser usr) =>

{

 var user = new ApiUser

 {

 Username = usr.Username,

 Password = BC.HashPassword(usr.Password),

 Email = usr.Email,

 Name = usr.Name

 };

 dbContext.Users.Add(user);

 await dbContext.SaveChangesAsync();

 return Results.Ok();

});

app.MapPost("/login", (AppDbContext dbContext, IConfiguration configuration, Use
{

 // ambil user

 var usr = dbContext.Users.Where(o => o.Username == model.UserName).FirstOrDe
 if (usr != null)

 {

 if (BC.Verify(model.Password, usr.Password))

 {

 var key = configuration.GetValue<string>("AppSettings:Secret");

 var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd1

 // generate token + expired

 var expiredAt = DateTime.Now.AddDays(2);

 var tokenHandler = new JwtSecurityTokenHandler();

Explanation:

This code snippet appears to be part of an ASP.NET Core application,
specifically from an API endpoint for user authentication. It
authenticates users and generates a JSON Web Token (JWT) upon
successful login. Here’s a breakdown of its functionality:

User Authentication:

The snippet begins by attempting to retrieve a user from the
database (dbContext) based on the username provided in the
model (likely a login request model).
It checks if the user exists (usr != null). If the user is found, it
proceeds to verify the password.

Password Verification:

The password verification is done using the BCrypt library
(BC.Verify). It compares the provided password (model.Password)
with the hashed password stored in the database (usr.Password).

 var tokenDescriptor = new SecurityTokenDescriptor

 {

 Subject = new ClaimsIdentity(

 new Claim[]

 {

 new Claim(ClaimTypes.Name,usr.Username)

 }),

 Expires = expiredAt,

 SigningCredentials = new SigningCredentials(

 new SymmetricSecurityKey(keyBytes),

 SecurityAlgorithms.HmacSha256Signature)

 };

 var token = tokenHandler.CreateToken(tokenDescriptor);
 var userToken = new UserToken

 {

 Token = tokenHandler.WriteToken(token),

 ExpiredAt = expiredAt.ToString(),

 Message = ""

 };

 return userToken;

 }

 }

 return new UserToken { Message = "Username or password is invalid" };

});

JWT Token Generation:

If the password verification is successful, the code proceeds to
generate a JWT token.
It retrieves a secret key from the application’s configuration
(configuration.GetValue<string>("AppSettings:Secret")). This key is
used to sign the JWT token and should be kept confidential.
A new JWT token is created with an expiration date set to 2
days from the current time (DateTime.Now.AddDays(2)).
The JwtSecurityTokenHandler is used to create a token with the
specified claims, expiration, and signing credentials.
The token includes a claim for the username (ClaimTypes.Name),
which identifies the user.

Token and Response Creation:

A new instance of UserToken (presumably a custom class) is
created to hold the generated JWT token, its expiration date,
and a message field (empty in this case).
This UserToken instance is returned, containing the JWT token
as a string (tokenHandler.WriteToken(token)) and its expiration date.

Error Handling:

If the user is not found or if the password verification fails, the
method returns a UserToken instance with a message indicating
that the username or password is invalid.

Save all change codes.

7. Implement Profile Endpoint

Create an endpoint to retrieve the user profile, which requires a valid
JWT token to access.

app.MapGet("/profile", [Authorize] async (HttpContext httpContext, AppDbContext
{

 var username = httpContext.User.Identity?.Name;

 var user = await dbContext.Users.FirstOrDefaultAsync(u => u.Username == user
 return user != null ? Results.Ok(new {

 user.Username,

8. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile:

9. Create the .http File for Testing

Create an secrestapi.http file for testing the registration, login, and profile
endpoints.

@secrestapi_HostAddress = http://localhost:5124

@token =
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1bmlxdWVfbmFtZSI6InVzZXIxIiwibmJmIjoxNz
AyMjg1NjMxLCJleHAiOjE3MDI0NTg0MzEsImlhdCI6MTcwMjI4NTYzMX0.mE7s2rSIIT78b-bjp-
5hhbgGEPGr1eJTww8Wg0DpRMo

register

POST {{secrestapi_HostAddress}}/register

Accept: application/json

Content-Type: application/json

{

 "Email": "user1@email.com",

 "Password": "pass123",

 "Username": "user1",

 "Name": "User 1"

}

login

POST {{secrestapi_HostAddress}}/login

Accept: application/json

Content-Type: application/json

{

 "Password": "pass123",

 "Username": "user1"

}

###

GET {{secrestapi_HostAddress}}/profile

Accept: application/json

Content-Type: application/json

 user.Name,

 user.Email

 }) : Results.NotFound();

});

dotnet run --launch-profile https

Authorization: Bearer {{token}}

###

Change the @secrestapi_HostAddress variable to match your application’s
address.

The @token variable is used to store the JWT token generated by the login
endpoint. This token is then used to access the profile endpoint.

10. Testing the API

Test user registration, login, and profile access using Scalar UI or the
REST Client extension in Visual Studio Code.
For Scalar UI, navigate to https://localhost:<port>/scalar and try the
endpoints.

Figure 4.1 Scalar UI.

Firstly, create user by using register endpoint.
Then, login by using login endpoint. Copy the JWT token from the
response of login endpoint.

Figure 4.2 Perform login on Scalar UI.

Finally, access the profile endpoint by using the JWT token.
Add the JWT token to the Authorization header in Scalar UI.
Put as Bearer <token> where <token> is the JWT token you copied from the
response of login endpoint.
Then, click the Send button to send the request to the profile endpoint.

Figure 4.3 Authorize with JWT token.

Now you can access the profile endpoint.
Another option, you can set a token to Scalar Authentication.
Click Bearer for Auth Type and paste the JWT token to the Token field.

Figure 4.4 Add JWT token on Scalar UI.

You also use the REST Client extension in Visual Studio Code to test
the endpoints.
Click the Send Request button to send the request to the endpoint.

Figure 4.5 REST Client extension in Visual Studio Code.

Afer signed in, copy token value from the response and paste it to the
@token variable in the .http file.

4.2.4 Conclusion

This lab demonstrates how to implement a basic authentication and
authorization system in an ASP.NET Core Minimal API application using
Entity Framework Core for user management, bcrypt for password hashing,
and JWT for token generation and validation.

4.3 Exercise 13: Role-Based Access Control
(RBAC)

In this lab, we’ll implement Role-Based Access Control (RBAC) in an
ASP.NET Core Minimal API application using JWT tokens for authorization.
This lab will guide you through creating roles, assigning them to users, and
securing API endpoints based on these roles.

4.3.1 Objective

Implement Role-Based Access Control (RBAC) in an ASP.NET Core 9.0
Minimal API application using JWT tokens for authorization. This lab will
guide you through creating roles, assigning them to users, and securing API
endpoints based on these roles.

4.3.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
JWT authentication setup in the ASP.NET Core project
REST Client extension in Visual Studio Code for testing

4.3.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Install Required Packages

mkdir rbacapp

cd rbacapp

dotnet new webapi

code .

Install EF Core, bcrypt, and JWT packages:

Install the Scalar UI package:

3. Define Models and DbContext

Create a Models folder and define a ApiUser model on ApiUser.cs file:

We also create DTOs (Data Transfer Objects) for user registration and login.
These DTOs are used to transfer data between the client and server. - Inside
Models folder, write UserLogin.cs file and write the following code:

We also create UserToken.cs file as DTO for JWT token. This DTO is used
to transfer JWT token between the client and server.

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package BCrypt.Net-Next

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

dotnet add package Scalar.AspNetCore

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace rbacapp.Models;

public class ApiUser

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Username { get; set; } = "";

 public string Password { get; set; } = "";

 public string Name { get; set; } = "";

 public string Email { get; set; } = "";

}

namespace rbacapp.Models;

public class UserLogin

{

 public string UserName { get; set; } = "";

 public string Password { get; set; } = "";

}

namespace rbacapp.Models;

public class UserToken

To implement RBAC, we need to create a Role model and a UserRole
model.

Every user can have one or more roles.

The Role model represents a role in the application, such as “Admin” or
“Manager”.

The following code snippet shows the Role model, Role.cs in the Models
folder:

The following code snippet shows the UserRole model, UserRole.cs in the
Models folder:

{

 public string Token { set; get; } = "";

 public string ExpiredAt { set; get; } = "";

 public string Message { set; get; } = "";

}

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace rbacapp.Models;

public class Role

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public List<ApiUser>? Users { get; set; }

}

using Microsoft.AspNetCore.Identity;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace rbacapp.Models;

public class UserRole

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public ApiUser? User { get; set; } = null!;

 public Role? Role { get; set; } = null!;

}

Inside a Models folder and implement AppDbContext on AppDbContext.cs file:

4. Configure DbContext and JWT in Program.cs

In general, we use the same configuration as the previous lab.

Configure DbContext and add JWT authentication in Program.cs.

In Program.cs, configure the DbContext:

To generate JWT tokens, we need to add a secret key to the
configuration.

Then, we add authentication for bearer JWT token

Write this code before builder.Build()

using Microsoft.EntityFrameworkCore;

namespace rbacapp.Models;

public class AppDbContext : DbContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options) : base(options

 public DbSet<ApiUser> Users { get; set; }

 public DbSet<Role> Roles { get; set; }

 public DbSet<UserRole> UserRoles { get; set; }

}

using rbacapp.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.Authentication.JwtBearer;

using Microsoft.AspNetCore.Authorization;

using Microsoft.IdentityModel.Tokens;

using System.Text;

using BC = BCrypt.Net.BCrypt;

using System.IdentityModel.Tokens.Jwt;

using System.Security.Claims;

using Microsoft.OpenApi.Models;

using Microsoft.Extensions.Options;

using Scalar.AspNetCore;

// ...

builder.Services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

// ...

We add authorization to enable authorization using the [Authorize]
attribute.

Since we activate the authorization, we need to add the OpenAPI to our
application.

We modify the builder.Services.AddOpenApi() method as follows:

// configure jwt

var key = builder.Configuration["AppSettings:Secret"];

var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd11234df4444sd
builder.Services.AddAuthentication(o =>

{

 o.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

 o.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

})

.AddJwtBearer(o =>

{

 o.RequireHttpsMetadata = false;

 o.SaveToken = true;

 o.TokenValidationParameters = new TokenValidationParameters

 {

 ValidateIssuerSigningKey = true,

 IssuerSigningKey = new SymmetricSecurityKey(keyBytes),

 ValidateIssuer = false,

 ValidateAudience = false,

 };

});

var multiPolicyAuthorization = new AuthorizationPolicyBuilder(

 JwtBearerDefaults.AuthenticationScheme)

 .RequireAuthenticatedUser()

 .Build();

builder.Services.AddAuthorization(o =>

{

 o.DefaultPolicy = multiPolicyAuthorization;

});

builder.Services.AddOpenApi(options =>

{

 options.AddDocumentTransformer((document, context, cancellationToken) =>

 {

 document.Info.Title = "Secure REST API";

 document.Info.Version = "v1";

 document.Info.Description = "A secure REST API with JWT authentication"

 // Add JWT security scheme

 document.Components ??= new OpenApiComponents();

 document.Components.SecuritySchemes["Bearer"] = new OpenApiSecuritySchem
 {

 Type = SecuritySchemeType.Http,

 Scheme = "bearer",

 BearerFormat = "JWT",

We also add Scalar UI to our application. Write this code before
builder.Build()

Last, we activate Scalar UI, uthentication and authorization in our
application. Write this code after builder.Build()

5. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in
appsettings.json and appsettings.Development.json.

 Description = "Enter JWT Bearer token"

 };

 return Task.CompletedTask;

 });

});

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference(options =>

 {

 options.Title = "Secure REST API";

 options.Theme = ScalarTheme.Purple;

 options.ShowSidebar = true;

 options.DefaultHttpClient = new(ScalarTarget.CSharp, ScalarClient.HttpCl
 });

}

// ...

app.UseHttpsRedirection();

// add these lines

app.UseAuthentication();

app.UseAuthorization();

{

 // ..

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=Training2DB; uid=tester; pwd=pass123; Tr
 },

 "AppSettings": {

 "Secret": "aaaaabbbbbcccccddddd11234df4444sd"

 }

 // ..

}

Change the connection string to match your database configuration.

You can also change the secret key of JWT token. Recommend to use a
random string with 32 characters.

Create migrations and update the database:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, rbacapp.csproj.

6. Set up Roles

In this lab, we will create two roles: “Admin” and “Manager”.

We create /setuproles API endpoint to create roles into the database.

To address duplicate roles, we check if the roles already exist in the
database. If not, we create them.

7. Implement Registration and Login Endpoints

Implement a registration endpoint to create new users with hashed
passwords.

In Program.cs, write this code for registration endpoint

dotnet ef migrations add InitialCreate

dotnet ef database update

app.MapGet("/setuproles", async (AppDbContext dbContext) =>

{

 var roles = dbContext.Roles.ToList();

 if(roles.Count <= 0)

 {

 dbContext.Roles.Add(new Role { Name = "Admin" });

 dbContext.Roles.Add(new Role { Name = "Manager" });

 await dbContext.SaveChangesAsync();

 }

 return Results.Ok(new { Message = "Roles was created"});

});

app.MapPost("/register", async (AppDbContext dbContext, ApiUser usr) =>

{

 var user = new ApiUser

 {

 Username = usr.Username,

Implement a login endpoint that authenticates users with database
authentication and returns a JWT token.

 Password = BC.HashPassword(usr.Password),

 Email = usr.Email,

 Name = usr.Name

 };

 dbContext.Users.Add(user);

 await dbContext.SaveChangesAsync();

 return Results.Ok();

});

app.MapPost("/login", (AppDbContext dbContext, IConfiguration configuration, Use
{

 // ambil user

 var usr = dbContext.Users.Where(o => o.Username == model.UserName).FirstOrDe
 if (usr != null)

 {

 if (BC.Verify(model.Password, usr.Password))

 {

 List<Claim> claims = new List<Claim>();

 // get roles by userid

 var roles = from userRole in dbContext.UserRoles

 join role in dbContext.Roles on userRole.Role!.Id equals
 where userRole.User!.Id == usr.Id

 select role.Name;

 foreach (var roleName in roles)

 {

 claims.Add(new Claim(ClaimTypes.Role, "" + roleName));

 }

 claims.Add(new Claim(ClaimTypes.Name, usr.Username));

 // generate token

 var key = configuration.GetValue<string>("AppSettings:Secret");

 var keyBytes = Encoding.ASCII.GetBytes(key ?? "aaaaabbbbbcccccddddd1
 var symKey = new SymmetricSecurityKey(keyBytes); // Use a secure key
 var creds = new SigningCredentials(symKey, SecurityAlgorithms.HmacS
 var expiry = DateTime.Now.AddDays(2);

 var token = new JwtSecurityToken(

 claims: claims,

 expires: expiry,

 signingCredentials: creds

);

 var userToken = new UserToken

 {

 Token = new JwtSecurityTokenHandler().WriteToken(token),

 ExpiredAt = expiry.ToString(),

 Message = ""

 };

 return userToken;

 }

 }

Modify secret key aaaaabbbbbcccccddddd11234df4444sd with your secret key.

After user login, we get the user’s roles from the database.

Use these roles to create claims for the JWT token.

We put user roles and username as claims in the JWT token.

8. Assign a Role to an User

In this lab, we don’t privide a dashboard to manage roles and users.

We provide an API endpoint to assign a role to an user.

We create /addrole/{username}/role/{rolename} API endpoints to assign a role
to an user.

{username} is existing username in the database.

{rolename} is existing role name in the database.

The following is a complete code snippet for the
/addrole/{username}/role/{rolename} endpoint:

 return new UserToken { Message = "Username or password is invalid" };

});

// add role

app.MapGet("/addrole/{username}/role/{rolename}",

 async (AppDbContext db, string username, string rolename) =>

{

 var role = db.Roles.Where(a => a.Name == rolename).FirstOrDefault();

 if (role is null) return Results.NotFound();

 var user = db.Users.Where(a => a.Username == username).FirstOrDefault();

 if (user is null) return Results.NotFound();

 var userRole = new UserRole { Role = role, User = user };

 await db.UserRoles.AddAsync(userRole);

 await db.SaveChangesAsync();

 return Results.Ok($"Role has been added. ID: {userRole.Id}");

});

After the role is assigned to the user, we can see the role in the database.

Call the /addrole/{username}/role/{rolename} endpoint to assign a role to an
user.

9. Resource Endpoints

We provide some resource endpoints to test the role-based access
control.

We define /profile endpoint to get user profile.

Any user can access this endpoint but the user must have a valid JWT
token.

This endpoint is secured by JWT token.

The following is a complete code snippet for the /profile endpoint:

ASP.NET Core provides a built-in [Authorize] attribute to secure an
endpoint.

User can access this endpoint if the user has a valid JWT token.

We also define /admin, /manager and /adminmanager endpoints to test the role-
based access control.

/admin endpoint is secured by JWT token and only can be accessed by
user with “Admin” role.

We use [Authorize(Roles = "Admin")] attribute to secure this endpoint.

app.MapGet("/profile", [Authorize] async (HttpContext httpContext, AppDbContext
{

 var username = httpContext.User.Identity?.Name;

 var user = await dbContext.Users.FirstOrDefaultAsync(u => u.Username == user
 return user != null ? Results.Ok(new {

 user.Username,

 user.Name,

 user.Email

 }) : Results.NotFound();

});

/manager endpoint is secured by JWT token and only can be accessed by
user with “Manager” role.

We use [Authorize(Roles = "Manager")] attribute to secure this endpoint.

/adminmanager endpoint is secured by JWT token and only can be accessed
by user with “Admin” or “Manager” role.

We use [Authorize(Roles = "Admin,Manager")] attribute to secure this
endpoint.

10. Create the .http File for Testing

Prepare an rbacapp.http file with requests for the role-secured endpoints.

@rbacapp_HostAddress = http://localhost:5289

@token = <token>

Change the @rbacapp_HostAddress variable to match your application’s
address.

The @token variable is used to store the JWT token generated by the login
endpoint. This token is then used to access the profile endpoint.

app.MapGet("/admin", [Authorize(Roles = "Admin")]() =>

{

 return Results.Ok(new

 {

 Message="This content is only for admin"

 });

});

app.MapGet("/manager", [Authorize(Roles = "Manager")] () =>

{

 return Results.Ok(new

 {

 Message = "This content is only for manager"

 });

});

app.MapGet("/adminmanager",[Authorize(Roles = "Admin,Manager")] () =>

{

 return Results.Ok(new

 {

 Message = "This content is only for admin and manager"

 });

});

We can call the /setuproles endpoint to create roles in the database.

setup roles

GET {{rbacapp_HostAddress}}/setuproles

Accept: application/json

Content-Type: application/json

We can call the /register endpoint to create a new user.

register

POST {{rbacapp_HostAddress}}/register

Accept: application/json

Content-Type: application/json

{

 "Email": "user3@email.com",

 "Password": "pass123",

 "Username": "user3",

 "Name": "User 3"

}

You may change the username, password, email, and name.

We can call the /login endpoint to get JWT token.

login

POST {{rbacapp_HostAddress}}/login

Accept: application/json

Content-Type: application/json

{

 "Password": "pass123",

 "Username": "user3"

}

Change the username and password with your username and password.

After user login, we get the JWT token from the response.

Copy the JWT token and paste it to the @token variable.

We can call resource endpoints to perform role-based access control.

###

GET {{rbacapp_HostAddress}}/profile

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

###

GET {{rbacapp_HostAddress}}/manager

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

###

GET {{rbacapp_HostAddress}}/admin

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

###

GET {{rbacapp_HostAddress}}/adminmanager

Accept: application/json

Content-Type: application/json

Authorization: Bearer {{token}}

Save all change codes.

11. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile:

12. Testing the API with Roles

Test the role-based secured endpoints using JWT tokens with
appropriate role claims.
Use a REST Client or Postman to send requests with JWT tokens to
your endpoints.
If we use Scalar UI, we can test the endpoints as follows.
Open the Scalar UI at https://localhost:<port>/scalar.

dotnet run --launch-profile https

Figure 4.6 Scalar UI from RBAC app.

You may need to change the port number.

Firstly, call the /setuproles endpoint to create roles in the database.

Then, call the /register endpoint to create a new user.

Create three users with different roles:

User1 with “Admin” role
User2 with “Manager” role
User3 with no role (or any other role)

Assign a role to the user by calling the /addrole/{username}/role/{rolename}
endpoint.

RBAC Testing Steps:

After user login, we get the JWT token from the response.
Copy the JWT token and paste it to the Authorize input field.
Now we can call resource endpoints to perform role-based access
control.
Try to sign in an user with Admin role.
Access the /profile, /manager and /adminmanager endpoints.

You should be able to access the /profile and /admin endpoints but not the
/adminmanager endpoint.
Now try to access /manager endpoint.
You should get an error message (HTTP Code 403) because you don’t
have the Manager role.

Figure 4.7 Access denied on Scalar UI from RBAC app.

You can explore another endpoints on Scalar UI.
For REST Client, we can test the endpoints as follows.
Open rbacapp.http file.
Click Send Request for /login.

Figure 4.8 Perform calling login.

You have a token after performed a login.
Copy this token to @token variable.
Try to access resource endpoints.
If you signed with “Admin” role, then you access /manager endpoint.
You will get error “HTTP code 403” because you are not “Manager”
role.

Figure 4.9 Access denied on REST API client from RBAC app.

Try to perform any endpoint.

4.3.4 Conclusion

This lab provides a hands-on experience in implementing Role-Based Access
Control in an ASP.NET Core Minimal API application using JWT tokens. By
completing this lab, you’ll learn how to create roles, assign them to users, and
secure API endpoints based on these roles, ensuring that only authorized
users can access specific resources.

4.4 Exercise 14: Data Privacy and Protection

In this lab, we learn how to protect sensitive data in an ASP.NET Core
Minimal API application using Entity Framework Core and ASP.NET Core
Data Protection APIs. We’ll implement data protection for an Employee model
by encrypting sensitive fields such as email, phone, and birthdate before

storing them in SQL Server. We’ll also mask these fields when retrieving the
list of employees.

4.4.1 Objective

Implement data protection for an Employee model in an ASP.NET Core 9.0
Minimal API application. Encrypt sensitive fields such as email, phone, and
birthdate before storing in SQL Server, and mask these fields when retrieving
the list of employees.

4.4.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
SQL Server installed and accessible
Entity Framework Core
ASP.NET Core Data Protection APIs

4.4.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Install Required Packages

Install EF Core and data protection packages:

mkdir privdata

cd privdata

dotnet new webapi

code .

Install the Scalar UI package:

3. Define the Employee Model

In the Models folder, create Employee.cs:

4. Implement AppDbContext

We use SQL Server to store data protection keys.

In the Models folder, create AppDbContext.cs:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

dotnet add package Microsoft.EntityFrameworkCore.Design

dotnet add package Microsoft.AspNetCore.DataProtection

dotnet add package Microsoft.AspNetCore.DataProtection.EntityFrameworkCore

dotnet add package Scalar.AspNetCore

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace privdata.Models;

public class Employee

{

 [Key]

 [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public string Email { get; set; } = ""; // To be encrypted

 public string Phone { get; set; } = "";// To be encrypted

 public string Birthdate { get; set; } = "";// To be encrypted

}

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore;

namespace privdata.Models;

public class AppDbContext : DbContext, IDataProtectionKeyContext

{

 public AppDbContext(DbContextOptions<AppDbContext> options) : base(options)

 public DbSet<Employee> Employees { get; set; }

 public DbSet<DataProtectionKey> DataProtectionKeys { get; set; }

}

In AppDbContext.cs, implement IDataProtectionKeyContext to store data
protection keys in the database.

DataProtectionKey is a built-in model for storing data protection keys in the
database.

In Program.cs, add and configure AppDbContext as previously described.

5. Configure Data Protection Services

Since we store data protection keys in the database, we need to
configure data protection services.

We create a custom data protection provider to handle data protection
keys in the database.

Create SqlServerDataProtectionProvider.cs file inside Models folder and write
these codes

using privdata.Models;

using Microsoft.EntityFrameworkCore;

using Microsoft.AspNetCore.DataProtection;

using Scalar.AspNetCore;

var builder = WebApplication.CreateBuilder(args);

// ...

// add database

builder.Services.AddDbContext<AppDbContext>(options =>

 options.UseSqlServer(builder.Configuration.GetConnectionString("MyDB")));

using Microsoft.AspNetCore.DataProtection;

using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore;

namespace privdata.Models;

public class SqlServerDataProtectionProvider : IDataProtectionProvider

{

 private readonly AppDbContext _dbContext;

 public SqlServerDataProtectionProvider(AppDbContext dbContext)

 {

 _dbContext = dbContext;

 }

 public IDataProtector CreateProtector(string purpose)

 {

 // Implement logic to retrieve or create a new key from the database

 var key = _dbContext.DataProtectionKeys.Where(o => o.FriendlyName == pur

CreateProtector() is used to create a data protector for a specific purpose.

CreateNewKey() is used to create a new key if the key doesn’t exist in the
database.

We also create a SensitiveDataService class to handle encryption and
masking logic.

Create SensitiveDataService.cs file inside Models folder

In Program.cs, add and configure Data Protection services as previously
described.

6. Implement Encryption and Masking Logic

We create a SensitiveDataService class to handle encryption and masking
logic.

 if(key == null)

 {

 key = CreateNewKey(purpose);

 }

 var protector = DataProtectionProvider.Create(key.FriendlyName ?? purpos
 .CreateProtector(purpose);

 return protector;

 }

 private DataProtectionKey CreateNewKey(string purpose)

 {

 var key = new DataProtectionKey { FriendlyName = purpose };

 _dbContext.DataProtectionKeys.Add(key);

 _dbContext.SaveChanges();

 return key;

 }

}

// ...

// Add data protection services

builder.Services.AddDataProtection()

 .PersistKeysToDbContext<AppDbContext>();

// add custom data protection provider

builder.Services.AddTransient<IDataProtectionProvider, SqlServerDataProtectionPr

// ...

Create SensitiveDataService.cs file inside Models folder

Following is a complete code snippet for the SensitiveDataService class:

using Microsoft.AspNetCore.DataProtection;

using Microsoft.AspNetCore.DataProtection.EntityFrameworkCore;

namespace privdata.Models;

public class SensitiveDataService

{

 private readonly IDataProtector _protector;

 public SensitiveDataService(IDataProtectionProvider provider)

 {

 _protector = provider.CreateProtector("EmployeeDataProtector");

 }

 public Employee EncryptEmployeeData(Employee employee)

 {

 employee.Email = _protector.Protect(employee.Email);

 employee.Phone = _protector.Protect(employee.Phone);

 employee.Birthdate = _protector.Protect(employee.Birthdate);

 return employee;

 }

 public Employee MaskEmployeeData(Employee employee)

 {

 employee.Email = MaskEmail(_protector.Unprotect(employee.Email));

 employee.Phone = MaskPhone(_protector.Unprotect(employee.Phone));

 employee.Birthdate = "*****"; // Simple mask for birthdate

 return employee;

 }

 public static string MaskEmail(string email)

 {

 var atIndex = email.IndexOf('@');

 if (atIndex == -1 || atIndex == 0) return email; // Invalid or empty ema

 var accountPart = email.Substring(0, atIndex);

 var domainPart = email.Substring(atIndex);

 var maskedLength = accountPart.Length / 2;

 var maskedPart = new string('*', maskedLength);

 var visiblePart = accountPart.Substring(maskedLength);

 return maskedPart + visiblePart + domainPart;

 }

 private string MaskPhone(string phone)

 {

 // Implement phone masking logic

 return "*******" + phone.Substring(phone.Length - 4); // Example

EncryptEmployeeData() is used to encrypt sensitive employee data before
storing it in the database.

We encrypt the email, phone, and birthdate fields using the data
protector.

MaskEmployeeData() is used to mask sensitive employee data when sending
it to clients.

We mask the email and phone fields using the MaskEmail() and MaskPhone()
methods.

MaskEmail() masks the email address by replacing the first half of the
account name with asterisks *****.

MaskPhone() masks the phone number by replacing the first 7 digits with
asterisks *******.

For birthdate, we simply replace the value with asterisks *****.

Since we use the data protector to encrypt and decrypt sensitive data, we
need to inject the SensitiveDataService class into the API endpoints.

7. Create the Database and Apply Migrations

Configure your connection string and secret key of JWT token in
appsettings.json and appsettings.Development.json.

 }

}

...

builder.Services.AddTransient<SensitiveDataService>();

...

{

 // ..

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=Training3DB; uid=tester; pwd=pass123; Tr
 },

 "AppSettings": {

 "Secret": "aaaaabbbbbcccccddddd11234df4444sd"

 }

Change the connection string to match your database configuration.

You can also change the secret key of JWT token. Recommend to use a
random string with 32 characters.

Create migrations and update the database:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, privdata.csproj.

8. Create API Endpoints

Implement API endpoints for adding and retrieving Employee data:

9. Create the .http File for Testing

Create a privdata.http file with requests for adding and retrieving
employee data.

@privdata_HostAddress = http://localhost:5252

Create Employee

POST {{privdata_HostAddress}}/employees

Accept: application/json

Content-Type: application/json

{

 "name": "user 5",

 // ..

}

dotnet ef migrations add InitialCreate

dotnet ef database update

app.MapPost("/employees", (AppDbContext dbContext, SensitiveDataService service,
{

 dbContext.Employees.Add(service.EncryptEmployeeData(employee));

 dbContext.SaveChanges();

 return Results.Ok();

});

app.MapGet("/employees", (AppDbContext dbContext, SensitiveDataService service)
{

 var employees = dbContext.Employees.AsEnumerable().Select(service.MaskEmploy
 return Results.Ok(employees);

});

 "email": "user5@email.com",

 "phone": "08134455483",

 "birthdate": "11-des-1996"

}

Get All Employees

GET {{privdata_HostAddress}}/employees

Accept: application/json

10. Configure Scalar UI

In Program.cs, configure Scalar UI to provide a user-friendly interface for
testing the API endpoints.

11. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile:

12. Testing the API

We use Scalar UI to test the API.
Open the Scalar UI at https://localhost:<port>/scalar.

using Scalar.AspNetCore;

...

builder.Services.AddOpenApi();

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

dotnet run --launch-profile https

Figure 4.10 Scalar UI from PrivData app.

Try to add some employees.
Then, open the database and see the employee data.

Figure 4.11 Employee data in the database.

You can see the email, phone, and birthdate fields are encrypted.
Now, try to get all employees.
You can see the email, birthdate and phone fields are masked.

Figure 4.12 Employee data in the database.

We also use the REST Client extension to test adding and retrieving
encrypted and masked employee data.
Click Send Request for POST /employees to add an employee.
Click Send Request for GET /employees to get all employees.

Figure 4.13 A list of employee data with masked data.

4.4.4 Conclusion

This lab demonstrates how to encrypt sensitive employee data before storing
it in SQL Server and how to mask this data when sending it to clients in an
ASP.NET Core 9.0 Minimal API application. By completing this lab, you
gain practical experience in handling sensitive data securely.

4.5 Exercise 15: Rate Limiting and Throttling

In this lab, we learn how to implement rate limiting and throttling in an
ASP.NET Core Minimal API application. We’ll use the AspNetCoreRateLimit
package to manage the rate of requests to our API and protect it from abuse
and overuse.

4.5.1 Objective

Implement rate limiting and throttling in an ASP.NET Core 9.0 Minimal API
to control the rate of requests a user can send to the API. This lab will cover
setting up middleware to manage request rates and protect the API from
abuse and overuse.

4.5.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
A package for rate limiting, such as AspNetCoreRateLimit
REST Client extension in Visual Studio Code for testing

4.5.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Install the Rate Limiting Package

Install AspNetCoreRateLimit, a library to implement rate limiting:

Install the Scalar UI package:

mkdir ratelimitapi

cd ratelimitapi

dotnet new webapi

code .

dotnet add package AspNetCoreRateLimit

3. Configure Rate Limiting in Program.cs

In Program.cs, configure rate limiting services and middleware:

Add rate limiting settings in appsettings.json:

4. Add Test API Endpoints

We use existing endpoints from the webapi project template
/weatherforecast.

5. Build and Run the Application

dotnet add package Scalar.AspNetCore

using Scalar.AspNetCore;

using AspNetCoreRateLimit;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddMemoryCache();

builder.Services.Configure<IpRateLimitOptions>(builder.Configuration.GetSection
builder.Services.AddInMemoryRateLimiting();

builder.Services.AddSingleton<IRateLimitConfiguration, RateLimitConfiguration>(

var app = builder.Build();

// Configure the HTTP request pipeline.

app.UseIpRateLimiting();

if (app.Environment.IsDevelopment())

{

 app.MapOpenApi();

 app.MapScalarApiReference();

}

// ... other middleware ...

"IpRateLimiting": {

 "EnableEndpointRateLimiting": true,

 "StackBlockedRequests": false,

 "GeneralRules": [

 {

 "Endpoint": "*",

 "Period": "1m",

 "Limit": 10

 }

]

}

Run the application using dotnet run.

We also run the application with https profile:

6. Create the .http File for Testing

Prepare a ratelimitapi.http file with requests to test the rate-limited
endpoints:

@ratelimitapi_HostAddress = http://localhost:5205

GET {{ratelimitapi_HostAddress}}/weatherforecast

Accept: application/json

###

7. Testing Rate Limiting

We can test the rate limiting using Scalar UI.
Open the Scalar UI at https://localhost:<port>/scalar.
Click Try it out and Execute button for /weatherforecast endpoint.
Try to click more than 10 times until you get an error message.

Figure 4.14 Scalar UI from RateLimitApi app.

dotnet run --launch-profile https

You should receive 429 Too Many Requests responses.

Use the REST Client extension to send multiple requests to your API
and observe the rate limiting in action. After exceeding the limit, you
should receive 429 Too Many Requests responses.

Figure 4.15 REST Client from RateLimitApi app.

4.5.4 Conclusion

This lab provides practical experience in implementing rate limiting in an
ASP.NET Core Minimal API. Through the setup of AspNetCoreRateLimit, you’ll
understand how to manage and restrict the rate of requests to your API,
which is crucial for maintaining service stability and preventing abuse.

4.6 Exercise 16: Configuring CORS in ASP.NET
Core 9.0 Minimal API

In this lab, we learn how to configure and use Cross-Origin Resource Sharing
(CORS) in an ASP.NET Core Minimal API application. We’ll configure
CORS to allow requests from specific origins and test its functionality.

4.6.1 Objective

Learn how to configure and use Cross-Origin Resource Sharing (CORS) in
an ASP.NET Core 9.0 Minimal API application. This lab covers setting up
CORS to allow requests from specific origins and testing its functionality.

4.6.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
Basic understanding of CORS (Cross-Origin Resource Sharing)
REST Client extension in Visual Studio Code or a front-end application
for testing

4.6.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Configure CORS in Program.cs

mkdir corsapi

cd corsapi

dotnet new webapi

code .

In Program.cs, configure CORS to allow specific origins, methods, and
headers:

3. Add Test API Endpoints

Implement some test API endpoints to demonstrate CORS functionality
We use existing endpoints from the webapi project template
/weatherforecast.

4. Build and Run the Application

Run your application using dotnet run.

You can also run the application with https profile:

5. Create Client App

We use a simple HTML page to test CORS.

Create index.html file in the root folder of the project.

Write these codes

var builder = WebApplication.CreateBuilder(args);

// Add CORS services

builder.Services.AddCors(options =>

{

 options.AddPolicy("AllowSpecificOrigin", builder =>

 builder.WithOrigins(["http://example.com", "http://test.com"])
 .AllowAnyMethod()

 .AllowAnyHeader());

});

var app = builder.Build();

// Use CORS with the specified policy

app.UseCors("AllowSpecificOrigin");

// ... other configurations like app.MapGet ...

dotnet run --launch-profile https

<!DOCTYPE html>

<html>

Change the port number to match your application’s address.

Project folder should be put on web server.

We also run this project using Python or PHP built-in web server.

For Python, run this command inside project folder

Figure 4.16 CORS Test page.

<head>

 <title>CORS Test</title>

</head>

<body>

 <h1>CORS Request Test</h1>

 <button id="test-cors">Test CORS</button>

 <script>

 document.getElementById('test-cors').addEventListener('click', () => {

 fetch(' https://localhost:7140/weatherforecast')

 .then(response => response.text())

 .then(data => console.log(data))

 .catch(error => console.error('CORS Error:', error));

 });

 </script>

</body>

</html>

python -m http.server 8000

Open Developer Tools so you can see the console output.

6. Test CORS Configuration

After running the application, open the CORS test page in your browser.
Click the Test CORS button to send a request to your API.

Figure 4.17 Get CORS error.

You should see a CORS error in the console.

Now, we configure CORS to allow requests from the test page.

In Program.cs, change the CORS policy to allow all origins, methods, and
headers

We add "http://localhost:8080"into WithOrigins method.

// Add CORS services

builder.Services.AddCors(options =>

{

 options.AddPolicy("AllowSpecificOrigin", builder =>

 builder.WithOrigins(["http://example.com", "http://test.com", "http://lo
 .AllowAnyMethod()

Run the application again and test the CORS request.

Figure 4.18 CORS request is successful.

You should see the response from the API in the console.

4.6.4 Conclusion

This lab guides you through setting up and testing CORS in an ASP.NET
Core 9.0 Minimal API application. By completing this lab, you’ll understand
how to configure CORS policies to control how resources in your API can be
accessed from a different domain.

 .AllowAnyHeader());

});

5 Monitoring and Deployment
5.1 Introduction

5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API

What is Monitoring?

Monitoring in the context of ASP.NET Core 9.0 Minimal API involves
observing and tracking the application’s performance, health, and activities. It
includes logging, metrics collection, and health checks.

Key Aspects of Monitoring:

1. Logging: ASP.NET Core provides built-in support for logging. You can
log information about application events, errors, and other significant
actions. It supports various logging providers like console, debug, event
source, and third-party providers like Serilog or NLog.

2. Health Checks: ASP.NET Core offers health check APIs that can be
used to check the health of the application and its dependencies, like
databases or external services.

3. Performance Metrics: Using tools like Application Insights or
Prometheus, you can gather performance metrics (response times,
request rates, failure rates, etc.) to understand how well the application
is performing.

4. Distributed Tracing: For microservices architecture, distributed tracing
tools like OpenTelemetry or Jaeger can be used to trace requests across
different services.

5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

What is Deployment? Deployment is the process of installing, configuring,
and enabling a specific version of an application on a server or cloud
environment.

Deployment Strategies:

1. IIS Hosting: Host your ASP.NET Core app on a Windows Server using
Internet Information Services (IIS). Ensure to install the .NET Core
Hosting Bundle and configure IIS for ASP.NET Core.

2. Docker Containers: Containerize your app with Docker, creating a
portable and consistent environment. This allows easy deployment to
container orchestration platforms like Kubernetes.

3. Cloud Platforms: Deploy your application to cloud services like Azure
App Service, AWS Elastic Beanstalk, or Google Cloud Run. These
platforms offer easy scaling, management, and additional services like
databases, caching, etc.

4. Linux Hosting: Deploy the application on a Linux server using reverse
proxies like Nginx or Apache. Ensure the server has the .NET runtime
installed.

5. CI/CD Pipeline: Implement continuous integration and continuous
deployment using tools like GitHub Actions, Jenkins, or Azure DevOps.
Automate the testing and deployment process to ensure reliable and
frequent deployments.

Best Practices:

Environment-Specific Configuration: Use appsettings.json,
environment variables, or secret management tools to manage different
configurations for development, staging, and production environments.

Database Migrations: Automate database updates using Entity
Framework Core migrations to ensure the database schema is up-to-date
with the application.

Security: Implement security practices like HTTPS enforcement, CORS
policies, and securing sensitive data.

Testing: Prior to deployment, conduct thorough testing including unit
testing, integration testing, and load testing.

Monitoring and deployment are crucial aspects of the development lifecycle
of ASP.NET Core 9.0 Minimal API applications. Effective monitoring
ensures the application runs smoothly and efficiently, while a well-planned
deployment strategy enables reliable and scalable delivery of the application
to end-users.

5.2 Exercise 17: Health Check and Monitoring

In this lab, you will learn how to implement health checks and monitoring in
an ASP.NET Core 9.0 Minimal API application. You will set up health
checks for various components of your application and monitor their status.

5.2.1 Objective

Implement health checks and monitoring in an ASP.NET Core 9.0 Minimal
API application. This lab will guide you through setting up health checks for
various components of your application and monitoring their status.

5.2.2 Requirements

.NET 9.0 SDK installed
Visual Studio Code or another code editor
Basic understanding of ASP.NET Core and its middleware
REST Client extension in Visual Studio Code for testing

5.2.3 Lab Steps

1. Set Up the ASP.NET Core 9.0 Minimal API Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

2. Add Health Checks

In Program.cs, add the health checks middleware:

3. Build and Run the Application

Compile and run your application.

Use dotnet run to start the application.

You can also run the application with https profile:

4. Create the .http File for Testing

mkdir healthcheckapi

cd healthcheckapi

dotnet new webapi

code .

var builder = WebApplication.CreateBuilder(args);

// Add health checks

builder.Services.AddHealthChecks()

 .AddCheck("MyApp", () =>

 HealthCheckResult.Healthy("The check of the sample is OK!"),

 tags: ["myapp"]);

// ... other configurations ...

var app = builder.Build();

// Map health check endpoints

app.MapHealthChecks("/health");

// ... other app configurations ...

dotnet run --launch-profile https

Prepare an HealthCheckApi.http file with a request to the health check
endpoint:

@healthcheckapi_HostAddress = http://localhost:5145

GET {{healthcheckapi_HostAddress}}/health

Accept: application/json

###

5. Testing the Health Checks

Use the REST Client extension to test the health check endpoint.
Click the Send Request button to send the request to the health check
endpoint. You should receive a response indicating the health status of
the application components.

Figure 5.1 Testing the health check endpoint.

You will receive a message Healthy if the application is running correctly.

6. Configure Additional Health Checks (Optional)

For more advanced scenarios, add health checks for databases, external
services, or custom components.

For example, to add a health check for a SQL Server database, use the
following code:

Since we call AddSqlServer(), we need to add the following package to the
project:

If you have errors related to Invariant Globalization, you may disable
InvariantGlobalization as false on project file, healthcheckapi.csproj.

Configure your database connection string in appsettings.json and
appsettings.Development.json.

Change the connection string to match your database configuration.

Now you can test the health check endpoint again. You should receive a
response indicating the health status of the application components.

Try to stop the SQL Server and test the health check endpoint again.
You should receive a response indicating the health status of the
application components.

builder.Services.AddHealthChecks()

 .AddSqlServer(builder.Configuration["ConnectionStrings:MyDB"],

 name: "SQL Server",

 tags: new[] { "db", "sql", "sqlserver" });

dotnet add package AspNetCore.HealthChecks.SqlServer

{

 // ..

 "ConnectionStrings": {

 "MyDB": "server=localhost; database=TrainingDB; uid=tester; pwd=pass123; Tru
 }

 // ..

}

Figure 5.2 Testing the health check endpoint included checking SQL Server.

5.2.4 Implement Custom Health Checks (Advanced)

To create a custom health check in ASP.NET Core that verifies the uptime of
an external website (e.g., http://localhost:9090, https://www.google.com), you will
need to implement a custom IHealthCheck class. This class will make an HTTP
request to the specified URL and determine the health based on the response.

Here’s how you can create and register this custom health check:

1. Create a Custom Health Check Class

Create a new class that implements the IHealthCheck interface. This class will
make an HTTP request to the external website and return Healthy if it receives
a successful response:

using Microsoft.Extensions.Diagnostics.HealthChecks;

using System.Net.Http;

using System.Threading;

using System.Threading.Tasks;

public class ExternalEndpointHealthCheck : IHealthCheck

{

 private readonly string _externalUrl;

2. Register the Custom Health Check

In your Program.cs or Startup.cs, register your custom health check with the
dependency injection container:

3. Configure the Custom Health Check

In the registration step, pass the URL of the external website
(https://www.google.com) to the constructor of your custom health check:

 public ExternalEndpointHealthCheck(string externalUrl)

 {

 _externalUrl = externalUrl;

 }

 public async Task<HealthCheckResult> CheckHealthAsync(HealthCheckContext context,
 {

 using (var httpClient = new HttpClient())

 {

 try

 {

 var response = await httpClient.GetAsync(_externalUrl, cancellationTo
 if (response.IsSuccessStatusCode)

 {

 return HealthCheckResult.Healthy($"The check for {_externalUrl} i
 }

 return HealthCheckResult.Unhealthy($"The check for {_externalUrl} fai
 }

 catch

 {

 return HealthCheckResult.Unhealthy($"The check for {_externalUrl} fai
 }

 }

 }

}

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddHealthChecks()

 .AddCheck<ExternalEndpointHealthCheck>("ExternalEndpointHealthCheck",

 null,

 new[] { "external_endpoint" });

var app = builder.Build();

// Map health check endpoint

app.MapHealthChecks("/health");

// ... other configurations ...

4. Test the Health Check

Run your application and access the /health endpoint. It should now include
the status of the external website in the health check response.

5.2.5 Conclusion

This lab provides a hands-on approach to implementing health checks in an
ASP.NET Core 9.0 Minimal API application. By setting up health checks,
you can monitor the status of various components of your application and
ensure its overall health.

The custom health check provides a simple way to monitor the availability of
an external service or website that your application depends on. The health
check makes an HTTP request to the specified URL and reports the service as
healthy if it receives a successful HTTP response, and unhealthy otherwise.
This can be particularly useful in microservices architectures where your
service might depend on other external services.

5.3 Exercise 18: Deploying to Web Server IIS

In this lab, you will learn how to deploy an ASP.NET Core 9.0 Minimal API
application to an Internet Information Services (IIS) web server. You will
cover the necessary steps to prepare, publish, and configure your ASP.NET
Core application for IIS deployment.

5.3.1 Objective

Learn how to deploy an ASP.NET Core 9.0 Minimal API application to an
Internet Information Services (IIS) web server. This lab covers the necessary
steps to prepare, publish, and configure your ASP.NET Core application for
IIS deployment.

5.3.2 Requirements

builder.Services.AddSingleton<ExternalEndpointHealthCheck>(_ =>

 new ExternalEndpointHealthCheck("https://www.google.com"));

A Windows server with IIS installed
.NET 9.0 SDK and Runtime installed on the server
ASP.NET Core Hosting Bundle installed on the server
Visual Studio Code or another code editor
An ASP.NET Core 9.0 Minimal API project

For demo, I use Windows Server 2022 with IIS 10.0 on Virtual Machine.

Figure 5.3 Windows Server 2022 with IIS 10.0.

5.3.3 Lab Steps

1. Set Up the ASP.NET Core Project

Open a command prompt or terminal.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

mkdir dotnetapp

cd dotnetapp

dotnet new webapi

Open the project in Visual Studio Code:

2. Prepare the Application for IIS

Ensure that the application is configured to run behind a reverse proxy
(IIS acts as a reverse proxy):

In Program.cs, add the forward headers middleware:

3. Publish the Application

Use the .NET CLI to publish your application:

This command compiles the application and places the output in the
./publish directory.

You can see the output of publush directory as follows:

4. Install ASP.NET Core Runtime 9.0.0

Download the ASP.NET Core Runtime 9.0.0 from
https://dotnet.microsoft.com/download/dotnet/9.0.

Copy the downloaded file to the server and install it.

code .

using Microsoft.AspNetCore.HttpOverrides;

// ...

var builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<ForwardedHeadersOptions>(options =>

{

 options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedH
});

var app = builder.Build();

app.UseForwardedHeaders();

// ... other middleware and configurations ...

dotnet publish -c Release -o ./publish

https://dotnet.microsoft.com/download/dotnet/9.0

Install the ASP.NET Core Runtime 9.0.0 on the server.

5. Configure and Deploy the Published Application to IIS

Copy the contents of the ./publish directory to your IIS server.

For instance, you can copy the files to C:\inetpub\wwwroot\dotnetapp.

On the IIS server, click Application Pools and create a new application
pool for your application, for instance, dotnetapp.

Ensure that the application pool is configured to use the .NET CLR
version No Managed Code, as ASP.NET Core runs in its own runtime.

Figure 5.4 Creating a new application pool for the application.

On the IIS server, create a new website or application in the IIS
Manager, pointing the physical path to where you’ve placed the
published files, C:\inetpub\wwwroot\dotnetapp.
Set the application pool to the one you created in the previous step.
Set port 8081 as the binding port for the website.

Figure 5.5 Creating a new website for the application.

Click OK to save the website configuration.

6. Test the Deployment

After setting up the site in IIS, navigate to the application URL in a web
browser or use a tool like curl to test the endpoints.
Navigate to http://localhost:8081/WeatherForecast to test the application.
Verify that the application is accessible and functioning as expected.

Figure 5.6 Testing the application in a web browser.

7. Troubleshooting (if needed)

If the application doesn’t work immediately, check the Windows Event
Viewer for any application-related errors.
Ensure that the server’s firewall allows traffic on your application’s port.

5.3.4 Conclusion

This lab provides a practical guide to deploying an ASP.NET Core 9.0
Minimal API application on an IIS web server. By following these steps, you
can successfully deploy and run your application in a Windows server
environment.

Note: Deployment to a production environment often requires additional
considerations, such as setting up secure connections (HTTPS), configuring
proper logging, and ensuring that the environment is secure. Always test
thoroughly in a staging environment before deploying to production.

5.4 Exercise 19: Deploying to Linux Server with
Nginx

In this lab, you will learn how to deploy an ASP.NET Core 9.0 Minimal API
application on a Linux server (Ubuntu) using Nginx as a reverse proxy. You
will configure .NET Core to run as a daemon on Ubuntu for a production-
ready setup.

5.4.1 Objective

Learn how to deploy an ASP.NET Core 9.0 Minimal API application on a
Linux server (Ubuntu) using Nginx as a reverse proxy. Configure .NET Core
to run as a daemon on Ubuntu for a production-ready setup.

5.4.2 Requirements

A Linux server running Ubuntu
Basic knowledge of Linux commands and Nginx
.NET 9.0 SDK and runtime installed on the server
Nginx installed on the server
An ASP.NET Core 9.0 Minimal API project

For demo, I use Ubuntu 22.04 on Virtual Machine.

Figure 5.7 Ubuntu 22.04 on Virtual Machine.

5.4.3 Lab Steps

1. Set up .NET on Linux

You can follow the instructions on the official Microsoft documentation
to install .NET on Ubuntu: https://learn.microsoft.com/en-
us/dotnet/core/install/linux

For demo, I use Ubuntu Server 22.04 on Virtual Machine.

Firstly, we register the Microsoft key and feed,
https://learn.microsoft.com/en-us/dotnet/core/install/linux-
ubuntu#supported-distributions:

You can install .NET 9.0 SDK using the following commands:

Verify the installation:

You should see your dotnet version

If you prefer to install .NET 9.0 Runtime, you can use the following
commands:

2. Prepare the ASP.NET Core Application

Get Ubuntu version

declare repo_version=$(if command -v lsb_release &> /dev/null; then lsb_release

Download Microsoft signing key and repository

wget https://packages.microsoft.com/config/ubuntu/$repo_version/packages-microso

Install Microsoft signing key and repository

sudo dpkg -i packages-microsoft-prod.deb

Clean up

rm packages-microsoft-prod.deb

Update packages

sudo apt update

sudo apt-get update && \

sudo apt-get install -y dotnet-sdk-9.0

dotnet --version

sudo apt-get update && \

sudo apt-get install -y aspnetcore-runtime-9.0

Develop your ASP.NET Core 9.0 Minimal API application on your
development machine.

Ensure it runs correctly locally before proceeding with the deployment.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

Open the project in Visual Studio Code:

Ensure that the application is configured to run behind a reverse proxy
(IIS acts as a reverse proxy):

In Program.cs, add the forward headers middleware:

Check to build to ensure that our application is running correctly:

3. Publish the Application

mkdir dotnetapp

cd dotnetapp

dotnet new webapi

code .

using Microsoft.AspNetCore.HttpOverrides;

// ...

var builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<ForwardedHeadersOptions>(options =>

{

 options.ForwardedHeaders = ForwardedHeaders.XForwardedFor | ForwardedH
});

var app = builder.Build();

app.UseForwardedHeaders();

// ... other middleware and configurations ...

dotnet build

Use the .NET CLI to publish your application:

This command will create a publish directory with all the necessary files
to run your application.

4. Install Nginx

Install Nginx on your Linux server:

Start Nginx and enable it to start on boot:

Verify that Nginx is running:

5. Transfer the Published Application to the Linux Server dt - We will
deploy our application to /var/www/dotnetapp directory. sh sudo mkdir
/var/www/dotnetapp - Copy the contents of the ./publish directory to your Linux
server. - For instance, you can copy the files to /var/www/dotnetapp. - You can
use cp command to copy the files: sh sudo cp -r ./publish/* /var/www/dotnetapp -
You can see the output of /var/www/dotnetapp directory as follows: sh ls -l
/var/www/dotnetapp - Ensure that the application files are owned by the current
user: sh sudo chown -R $USER:$USER /var/www/dotnetapp - Ensure that the
application files have the correct permissions: sh sudo chmod -R 755
/var/www/dotnetapp

- You can see the output of /var/www/dotnetapp directory as follows: sh ls -la
/var/www/dotnetapp

If your application is located on different machine, use scp or a similar
tool to transfer the contents of the publish directory to your Linux server.

6. Configure .NET Core Application as a Daemon

Create a systemd service file for your application:

dotnet publish -c Release -o ./publish

sudo apt install nginx

sudo systemctl start nginx

sudo systemctl enable nginx

sudo systemctl status nginx

Add the following content to the service file:

Replace /var/www/dotnetapp with the path to your application and
dotnetapp.dll with the name of your application DLL.

7. Start and Enable the .NET Core Service

Start the service and enable it to start on boot:

Verify that the service is running:

8. Install and Configure Nginx as a Reverse Proxy

If Nginx is not installed, install it:

Configure Nginx to reverse proxy to your application:

Add the following configuration inside the server block:

location / {

 proxy_pass http://localhost:5000;

sudo nano /etc/systemd/system/dotnetapp.service

[Unit]

Description=Example .NET Web API App running on Ubuntu

[Service]

WorkingDirectory=/var/www/dotnetapp

ExecStart=/usr/bin/dotnet /var/www/dotnetapp/dotnetapp.dll

Restart=always

RestartSec=10

KillSignal=SIGINT

SyslogIdentifier=dotnet-example

User=agusk

Environment=ASPNETCORE_ENVIRONMENT=Production

[Install]

WantedBy=multi-user.target

sudo systemctl start dotnetapp.service

sudo systemctl enable dotnetapp.service

sudo systemctl status dotnetapp.service

sudo apt install nginx

sudo nano /etc/nginx/sites-available/default

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection keep-alive;

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

}

Comment if you find location / block.

Figure 5.8 Configuring Nginx as a reverse proxy.

Replace http://localhost:5000 with the URL and port your .NET
application is running on.
http://localhost:5000 is the default URL and port for ASP.NET Core
applications.

8. Restart Nginx

Restart Nginx to apply the changes:

9. Test the Deployment

sudo systemctl restart nginx

Open a web browser and navigate to your server’s IP address or domain
name. You should see your ASP.NET Core application running.
Navigate to http://<server-ip>/WeatherForecast to test the application.

Figure 5.9 Testing the application in a web browser.

5.4.4 Conclusion

You have successfully deployed an ASP.NET Core 9.0 Minimal API
application on a Linux server running Ubuntu, using Nginx as a reverse
proxy. The application runs as a systemd service, ensuring it starts
automatically and remains running.

Security and Maintenance Tips:

Regularly update your Ubuntu server and installed packages.
Secure your application and server using firewalls, SSL/TLS
certificates, and by following best security practices.
Monitor your application and server performance and logs for any issues
or potential improvements.

5.5 Exercise 20: Deploying to Container Platforms

In this lab, you will learn how to containerize an ASP.NET Core 9.0 Minimal
API application and deploy it to a container platform. You will cover creating
a Docker container for your application and deploying it to a container
orchestration platform such as Kubernetes or Docker Swarm.

5.5.1 Objective

Learn how to containerize an ASP.NET Core 9.0 Minimal API application
and deploy it to a container platform. This lab will cover creating a Docker
container for your application and deploying it to a container orchestration
platform such as Kubernetes or Docker Swarm.

5.5.2 Requirements

.NET 9.0 SDK installed
Docker installed on your local machine
Basic understanding of containerization concepts
Access to a container orchestration platform (like Kubernetes, Docker
Swarm, or a cloud-based container service)

5.5.3 Lab Steps

1. Set Up the ASP.NET Core Project

Develop your ASP.NET Core 9.0 Minimal API application locally.

Test the application to ensure it’s working correctly before
containerizing it.

Navigate to your desired working directory or create a new one.

Create a new ASP.NET Core Minimal API project:

mkdir dotnetdocker

cd dotnetdocker

dotnet new webapi

Open the project in Visual Studio Code:

2. Create a Dockerfile

In the root of your ASP.NET Core project, create a file named Dockerfile.

Add the following contents to the Dockerfile:

Replace dotnetdocker with the name of your project.

3. Build and Test the Docker Image

Build the Docker image from the root of your project:

Once the image is built, run it locally to test:

Navigate to http://localhost:8080/weatherforecast in your browser to ensure
the containerized application is running correctly.

code .

FROM mcr.microsoft.com/dotnet/aspnet:9.0 AS base

WORKDIR /app

EXPOSE 80

EXPOSE 443

Use SDK image to build the application

FROM mcr.microsoft.com/dotnet/sdk:9.0 AS build

WORKDIR /src

COPY dotnetdocker.csproj .

RUN dotnet restore "dotnetdocker.csproj"

COPY . .

RUN dotnet build "dotnetdocker.csproj" -c Release -o /app/build

FROM build AS publish

RUN dotnet publish "dotnetdocker.csproj" -c Release -o /app/publish

Build runtime image

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .

ENTRYPOINT ["dotnet", "dotnetdocker.dll"]

docker build -t dotnetdocker .

docker run --rm -p 8080:8080 dotnetdocker

4. Push the Image to a Container Registry

For instance, if we want to publish to Docker Hub, we need to tag the
image as follows:

Change yourdockerhubusername with your Docker Hub username and tag
with the version of your application.

Sign in to Docker Hub:

Push the image to Docker Hub:

5. Deploy to a Container Orchestration Platform

Prepare your deployment and service YAML files for Kubernetes or a
similar configuration for other platforms.

Write deployment.yaml and service.yaml files as follows:

docker tag dotnetdocker yourdockerhubusername/dotnetdocker:tag

docker login

docker push yourdockerhubusername/dotnetdocker:tag

apiVersion: apps/v1

kind: Deployment

metadata:

 name: dotnetdocker

 labels:

 app: dotnetdocker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: dotnetdocker

 template:

 metadata:

 labels:

 app: dotnetdocker

 spec:

 containers:

 - name: dotnetdocker

 image: yourdockerhubusername/dotnetdocker:tag

 ports:

 - containerPort: 8080

Change yourdockerhubusername with your Docker Hub username and tag
with the version of your application.

Write service.yaml file as follows:

Deploy the application to the container platform:

Check the deployment status to ensure everything is running correctly.

6. Access the Deployed Application

Once deployed, access your application through the load balancer or
node port provided by your container platform.

5.5.4 Conclusion

You have successfully containerized and deployed an ASP.NET Core 9.0
Minimal API application to a container platform. This deployment strategy
enhances the scalability, portability, and consistency of your application
across different environments.

Best Practices: - Always test your containerized application locally before
deploying it to production. - Manage sensitive configuration data using
environment variables or configuration management tools provided by your
container platform. - Keep your container images updated and scan them for
vulnerabilities. - Monitor the performance and health of your deployed
application using platform-specific tools or third-party solutions.

apiVersion: v1

kind: Service

metadata:

 name: dotnetdocker

 labels:

 app: dotnetdocker

spec:

 type: LoadBalancer

 ports:

 - port: 80 # external port

 targetPort: 8080 # internal port

 selector:

 app: dotnetdocker

kubectl apply -f deployment.yaml

kubectl apply -f service.yaml

This is the end of the book. I hope you enjoyed it. If you have any questions,
please contact me.

Appendix A: C# Cheat Sheet
Basic Syntax and Structure:

1. Hello World:

2. Variables and Data Types:

3. Constants:

4. Arrays:

5. Loops:

For Loop:

using System;

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 }

 }

}

int number = 10;

string text = "Hello";

bool isTrue = true;

double decimalNumber = 5.99;

char letter = 'A';

const double PI = 3.14159;

int[] numbers = { 1, 2, 3, 4, 5 };

string[] names = new string[5];

for (int i = 0; i < 5; i++)

{

 Console.WriteLine(i);

}

While Loop:

Foreach Loop:

6. Conditionals:

If-Else:

Switch:

7. Methods:

int i = 0;

while (i < 5)

{

 Console.WriteLine(i);

 i++;

}

string[] names = { "Anna", "Bill", "Cindy" };

foreach (string name in names)

{

 Console.WriteLine(name);

}

if (number > 0)

{

 Console.WriteLine("Positive");

}

else

{

 Console.WriteLine("Non-Positive");

}

switch (number)

{

 case 1:

 Console.WriteLine("One");

 break;

 case 2:

 Console.WriteLine("Two");

 break;

 default:

 Console.WriteLine("Other");

 break;

}

void PrintName(string name)

{

 Console.WriteLine(name);

}

8. Classes and Objects:

Class Definition:

Creating an Object:

ASP.NET Core Specific:

9. Minimal API Endpoint:

10. Dependency Injection in Controllers:

11. Entity Framework Core - Basic Query:

public class Person

{

 public string Name { get; set; }

 public int Age { get; set; }

 public void Greet()

 {

 Console.WriteLine("Hello " + Name);

 }

}

Person person = new Person();

person.Name = "Alice";

person.Greet();

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

public class MyController : ControllerBase

{

 private readonly MyService _service;

 public MyController(MyService service)

 {

 _service = service;

 }

}

using (var context = new MyDbContext())

{

12. Middleware:

This cheat sheet provides a quick reference to some of the most commonly
used features and syntax in C#. It’s a handy tool for developers working
with the .NET framework and ASP.NET Core, especially when developing
Minimal APIs. Remember that C# and .NET are vast, and this cheat sheet
only scratches the surface of what’s possible.

 var users = context.Users.ToList();

}

app.Use(async (context, next) =>

{

 // Pre-processing logic here

 await next.Invoke();

 // Post-processing logic here

});

Appendix B: Resources
SQL Server 2025 High Availability & Disaster
Recovery: Always On Solutions Course

Dive into the world of SQL Server 2025 with our comprehensive Udemy
course, “SQL Server 2025: Build Always On HA & DR Solutions.” This
course is designed for database administrators and IT professionals who
want to master high availability (HA) and disaster recovery (DR) solutions
using the latest features of SQL Server 2025.

What You’ll Learn

In this course, you will learn to:

Understand HA and DR concepts in SQL Server 2025
Build and configure Windows Server Failover Clustering (WSFC)
Deploy Always On Availability Groups from scratch
Set up and manage the AG Listener for client connections
Configure read-only routing for reporting and BI workloads
Offload backups using Preferred Backup Replica
Perform failover testing: automatic, manual, and forced
Monitor and troubleshoot AG health
Integrate real-world ASP.NET Core apps with AG Listener
Apply best practices for performance and uptime

100% Hands-On with Real Labs

This course is not just theory. You’ll build your own lab environment using
virtual machines and simulate real-world HA/DR use cases.

We guide you through every step — from cluster setup to full availability
group testing. Whether you’re creating an AG with two replicas or

deploying to a multi-subnet environment, this course shows you how it
works in practice.

No scripts without context. No fluff. Just practical demos you can repeat
and apply at work.

Enroll today: SQL Server 2025: Build Always On HA & DR Solutions
https://www.udemy.com/course/sqlserverag/?
referralCode=2E28F5CFD4DFBAD4EC15

Enhance Your Learning with Our Udemy Course

For those who’ve journeyed with us through this book, we have something
special to further your understanding — a comprehensive Udemy course
titled “Red Hat NGINX Web Server: Publishing and Deploying Web
Apps.”

Why Choose This Course?

1. Specialized Knowledge: Dive deep into the world of Red Hat and
NGINX. Understand how to use NGINX on the Red Hat platform, a
powerful combination for web server deployments.

2. Hands-On Approach: Our course isn’t just about theory; we believe
in the ‘learn by doing’ philosophy. With guided tutorials and real-
world examples, grasp how to publish and deploy various web
applications effectively.

3. Expert Instructors: Benefit from the insights and expertise of
professionals who are not just educators but industry practitioners with
years of experience.

4. Flexible Learning: Learn at your own pace. With lifetime access, you
can revisit topics anytime and solidify your understanding.

Who Is This Course For? - Web developers looking to understand the
deployment process on Red Hat using NGINX. - System administrators
aiming to expand their knowledge in server configuration and optimization.
- IT professionals transitioning to roles that require knowledge of web
server setup and deployment on Red Hat.

https://www.udemy.com/course/sqlserverag/?referralCode=2E28F5CFD4DFBAD4EC15

Enroll today: Red Hat NGINX Web Server: Publishing and Deploying
Web Apps https://www.udemy.com/course/rhel-nginx/?
referralCode=C9CFA39AE9E332ADA9FB

While I can’t directly access or view content on external sites, including
Udemy, I can draft a promotional piece for your course “Mastering Docker:
Publishing and Deploying Web Applications” based on the title and URL
you’ve provided. Here’s a promotional content for your course:

Dive Deeper into Containerization with Our
Udemy Course

Having explored the vast realm of NGINX, it’s time to take a leap into
another crucial technology in the modern web infrastructure world: Docker.
We’re excited to introduce our Udemy course: “Mastering Docker:
Publishing and Deploying Web Applications.”

Course Highlights:

1. Comprehensive Docker Mastery: Navigate through the intricacies of
Docker, from understanding its architecture to deploying real-world
web applications.

2. Practical & Hands-On: Delve into practical scenarios, Dockerfile
creation, container orchestration, and more. The course isn’t just about
theory; it’s about empowering you with real-world skills.

3. Expert Guidance: Learn from seasoned professionals who bring their
wealth of industry knowledge to the table. Each module is tailored to
ensure you grasp the essence of Docker in web deployments.

4. On-The-Go Learning: Our course is structured for both beginners and
seasoned developers. With lifetime access, dive into lessons at your
convenience, and revisit modules anytime.

Who Should Enroll?

Web developers keen on leveraging containerization for their
applications.

https://www.udemy.com/course/rhel-nginx/?referralCode=C9CFA39AE9E332ADA9FB

DevOps professionals looking to streamline their CI/CD processes
using Docker.
IT enthusiasts aiming to gain a firm grasp on the future of web
application deployment.

Exclusive Features: - Detailed lessons breaking down Docker’s complex
topics. - Engaging quizzes to test and solidify your understanding. - A
certificate of completion to enhance your professional journey. - A vibrant
community forum to discuss, share, and learn from peers.

Expand your horizons beyond traditional web server technologies. Dive
into Docker and understand why it’s the talk of the tech world!

Join the learning journey: Mastering Docker: Publishing and Deploying
Web Applications https://www.udemy.com/course/webdocker/?
referralCode=E839AA8926D06B16DD61

Build Secure PHP APIs Like a Pro with Laravel
12, OAuth2, and JWT

Unlock the full potential of Laravel 12 for REST API development! This
hands-on course on Udemy teaches you how to build robust, secure, and
modern APIs using Laravel, MySQL, OAuth2, JWT, Sanctum, and Role-
Based Access Control (RBAC). Perfect for real-world applications and
2025 standards.

🚀 Highlight Topics

What’s New in Laravel 12 for API development
Build RESTful APIs from scratch (Hello World to full CRUD)
File upload and user data handling via REST API
Secure authentication with Sanctum, JWT, and OAuth2
Role-Based Access Control (RBAC) with middleware
Legacy support: Laravel 8, 7.x, and 6.x projects included
Real project codebases and testing tutorials

👨‍💻 Who Should Enroll?

https://www.udemy.com/course/webdocker/?referralCode=E839AA8926D06B16DD61

Laravel developers aiming to modernize their API skills
Backend engineers securing APIs with token-based auth
Teams migrating legacy Laravel APIs to newer standards
Students and professionals building real-world Laravel apps
Anyone preparing for backend development roles in 2025

Future-proof your Laravel skills. This course gives you everything you
need to build secure, scalable, and professional REST APIs in Laravel 12.
Learn by doing — with real code, live tests, and full project coverage.

👉 Join now and start building APIs that meet today’s security
demands. PHP REST API: Laravel 12, MySQL, OAuth2, JWT, Roles-Based
https://www.udemy.com/course/phprestapi/?
referralCode=2C5B2F14100B499E9845

Master Real-World Logging & Visualization with
the Full ELK Stack

Take control of your logging, search, and monitoring pipeline with this
hands-on Udemy course covering Elasticsearch, Logstash, Kibana, and
Beats. Learn how to set up, ingest, visualize, and scale log data using
practical projects — all designed for developers, sysadmins, and DevOps
engineers in real production environments.

🚀 Highlight Topics

Cross-platform installation: Windows, Ubuntu, macOS, Docker
Elasticsearch REST API: CRUD, mapping, queries, aggregation, SQL,
geo fields
Real-world API integration: PHP, ASP.NET Core, Node.js, Python
Logstash ingestion: files, folders, and RDBMS (MySQL)
Kibana Lens visualizations: charts, maps, dashboards, Canvas
Beats agents: Filebeat, Winlogbeat, Metricbeat, Packetbeat, Heartbeat,
Auditbeat
High Availability (HA) setup for Elasticsearch and Kibana with Nginx

https://www.udemy.com/course/phprestapi/?referralCode=2C5B2F14100B499E9845

👨‍💻 Who Should Enroll?

Developers and DevOps engineers building log-driven applications
System administrators responsible for monitoring and observability
Backend/API developers seeking integration with Elasticsearch
Cybersecurity analysts and IT ops engineers using ELK for log
auditing
Teams adopting open-source observability tools for modern
infrastructure

Log smarter, visualize better, and scale with confidence. Whether you’re
just getting started or already managing production systems, this course
gives you everything you need to build and operate a powerful ELK Stack
pipeline. With real-world use cases, cross-platform setups, and step-by-
step guidance, you’ll go beyond the basics and into expert territory.

👉 Enroll today to master the ELK Stack and unlock actionable insights
from your data! Practical Full ELK Stack: Elasticsearch, Kibana and
Logstash https://www.udemy.com/course/elkstack/?
referralCode=863C1036F77169C975C5

https://www.udemy.com/course/elkstack/?referralCode=863C1036F77169C975C5

Appendix C: Source Code
You can download the source code files for this book from GitHub at
https://github.com/agusk/ilmudata-book-aspnet9-minimalapi.

https://github.com/agusk/ilmudata-book-aspnet9-minimalapi

About
Agus Kurniawan’s journey in the field of technology, spanning from 2001,
is a remarkable blend of deep technical expertise and a fervent passion for
sharing knowledge. As a seasoned professional, Agus has carved a niche in
diverse technological domains, including software development, IoT
(Internet of Things), Machine Learning, IT infrastructure, and DevOps. His
experiences are not just limited to developing cutting-edge solutions but
also extend to shaping the future of upcoming technologists through
training and workshops.

Agus’s career is marked by significant contributions to both technological
innovation and community development. His recognition as a Microsoft
Most Valuable Professional (MVP) from 2004 to 2022 underlines his
proficiency in Microsoft technologies and his dedication to educating
others. Agus has been at the forefront of delivering various training sessions
and workshops, sharing his insights and helping others grow in the ever-
evolving tech industry.

Agus Kurniawan’s book, “Hallo .NET 9.0: Practical ASP.NET Core
Minimal API,” is a comprehensive guide that captures his extensive
experience in the realm of software development, particularly focusing on
the latest advancements in .NET technology. This book is a culmination of
Agus’s in-depth knowledge and practical approach to building applications
using ASP.NET Core 9.0, a framework known for its efficiency and
minimalism.

Contact the Author

Agus Kurniawan values the feedback, queries, and insights of his readers.
Whether you have a technical question related to .NET, a suggestion for
future editions of this book, or just want to share your experiences and
thoughts, Agus welcomes your correspondence.

Email: aguskur@hotmail.com, agusk2007@gmail.com

mailto:aguskur@hotmail.com
mailto:agusk2007@gmail.com

LinkedIn: linkedin.com/in/agusk

Twitter: [@agusk2010]

https://www.linkedin.com/in/agusk
https://twitter.com/agusk2010

	Preface
	Acknowledgments
	1 Introduction
	1.1 Overview of .NET 9.0
	1.1.1 Unified Platform
	1.1.2 Performance Enhancements
	1.1.3 Improved Cloud and Container Support
	1.1.4 Enhanced C# Language Features
	1.1.5 Blazor and WebAssembly Innovations
	1.1.6 Expanded AI and Machine Learning Capabilities
	1.1.7 Better Security and Compliance
	1.1.8 Enhanced Tooling and Development Experience

	1.2 Understanding ASP.NET Core Minimal API
	1.3 Benefits of Using Minimal APIs
	1.4 Best Practices and Use Cases
	1.5 Setting Up the Development Environment
	1.5.1 Installing .NET 9.0 SDK
	1.5.2 Installing SSL Certificates Development Tool
	1.5.3 Setting Up an Integrated Development Environment (IDE)
	1.5.4 Verifying the Setup
	1.5.5 Additional Tools and Extensions

	2 ASP.NET Core Minimal API Development
	2.1 Introduction
	2.2 Exercise 1: Hello World - ASP.NET Core Minimal API
	2.2.1 Objective
	2.2.2 Requirements
	2.2.3 Lab Steps
	2.2.4 Conclusion

	2.3 Exercise 2: RESTful Service Request and Response
	2.3.1 Objective
	2.3.2 Requirements
	2.3.3 Lab Steps
	2.3.4 Conclusion

	2.4 Exercise 3: OpenAPI Documentation
	2.4.1 Conclusion

	2.5 Exercise 4: Buidling a Calculator Service
	2.5.1 Objective
	2.5.2 Requirements
	2.5.3 Lab Steps
	2.5.4 Conclusion

	2.6 Exercise 5: Upload and Download File Web
	2.6.1 Objective
	2.6.2 Requirements
	2.6.3 Lab Steps
	2.6.4 Conclusion

	2.7 Exercise 6: Exception Handling and Logging
	2.7.1 Objective
	2.7.2 Requirements
	2.7.3 Lab Steps
	2.7.4 Conclusion

	2.8 Exercise 7: Middleware and Filters
	2.8.1 Objective
	2.8.2 Requirements
	2.8.3 Lab Steps
	2.8.4 Conclusion

	3 Accessing SQL and NoSQL Databases
	3.1 Introduction
	3.2 .NET Entity Framework Core
	3.3 Entity Framework Core tools
	3.4 Exercise 8: EF Core 9.0 Code First and ASP.NET Core Minimal API
	3.4.1 Objective
	3.4.2 Requirements
	3.4.3 Lab Steps
	3.4.4 Conclusion

	3.5 Exercise 9: EF Core 9.0 Database First and ASP.NET Core Minimal API
	3.5.1 Objective
	3.5.2 Requirements
	3.5.3 Lab Steps
	3.5.4 Conclusion

	3.6 Introduction to Database Transactions
	3.7 Exercise 10: Database Transaction
	3.7.1 Objective
	3.7.2 Requirements
	3.7.3 Lab Steps
	3.7.4 Conclusion

	3.8 Introduction to NoSQL Databases
	3.9 Exercise 11: NoSQL Database and ASP.NET Core Minimal API
	3.9.1 Objective
	3.9.2 Requirements
	3.9.3 Lab Steps
	3.9.4 Conclusion

	4 Deep Dive into Web Security
	4.1 Introduction
	4.2 Exercise 12: Authentication and Authorization
	4.2.1 Objective
	4.2.2 Requirements
	4.2.3 Lab Steps
	4.2.4 Conclusion

	4.3 Exercise 13: Role-Based Access Control (RBAC)
	4.3.1 Objective
	4.3.2 Requirements
	4.3.3 Lab Steps
	4.3.4 Conclusion

	4.4 Exercise 14: Data Privacy and Protection
	4.4.1 Objective
	4.4.2 Requirements
	4.4.3 Lab Steps
	4.4.4 Conclusion

	4.5 Exercise 15: Rate Limiting and Throttling
	4.5.1 Objective
	4.5.2 Requirements
	4.5.3 Lab Steps
	4.5.4 Conclusion

	4.6 Exercise 16: Configuring CORS in ASP.NET Core 9.0 Minimal API
	4.6.1 Objective
	4.6.2 Requirements
	4.6.3 Lab Steps
	4.6.4 Conclusion

	5 Monitoring and Deployment
	5.1 Introduction
	5.1.1 Monitoring in ASP.NET Core 9.0 Minimal API
	5.1.2 Deployment of ASP.NET Core 9.0 Minimal API

	5.2 Exercise 17: Health Check and Monitoring
	5.2.1 Objective
	5.2.2 Requirements
	5.2.3 Lab Steps
	5.2.4 Implement Custom Health Checks (Advanced)
	5.2.5 Conclusion

	5.3 Exercise 18: Deploying to Web Server IIS
	5.3.1 Objective
	5.3.2 Requirements
	5.3.3 Lab Steps
	5.3.4 Conclusion

	5.4 Exercise 19: Deploying to Linux Server with Nginx
	5.4.1 Objective
	5.4.2 Requirements
	5.4.3 Lab Steps
	5.4.4 Conclusion

	5.5 Exercise 20: Deploying to Container Platforms
	5.5.1 Objective
	5.5.2 Requirements
	5.5.3 Lab Steps
	5.5.4 Conclusion

	Appendix A: C# Cheat Sheet
	Appendix B: Resources
	SQL Server 2025 High Availability & Disaster Recovery: Always On Solutions Course
	Enhance Your Learning with Our Udemy Course
	Dive Deeper into Containerization with Our Udemy Course
	Build Secure PHP APIs Like a Pro with Laravel 12, OAuth2, and JWT
	Master Real-World Logging & Visualization with the Full ELK Stack

	Appendix C: Source Code
	About

